• 제목/요약/키워드: underwater image

검색결과 211건 처리시간 0.029초

Underwater Optical Image Data Transmission in the Presence of Turbulence and Attenuation

  • Ramavath Prasad Naik;Maaz Salman;Wan-Young Chung
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-14
    • /
    • 2023
  • Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.

수중 소나 영상 학습 데이터의 왜곡 및 회전 Augmentation을 통한 딥러닝 기반의 마커 검출 성능에 관한 연구 (Study of Marker Detection Performance on Deep Learning via Distortion and Rotation Augmentation of Training Data on Underwater Sonar Image)

  • 이언호;이영준;최진우;이세진
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.14-21
    • /
    • 2019
  • In the ground environment, mobile robot research uses sensors such as GPS and optical cameras to localize surrounding landmarks and to estimate the position of the robot. However, an underwater environment restricts the use of sensors such as optical cameras and GPS. Also, unlike the ground environment, it is difficult to make a continuous observation of landmarks for location estimation. So, in underwater research, artificial markers are installed to generate a strong and lasting landmark. When artificial markers are acquired with an underwater sonar sensor, different types of noise are caused in the underwater sonar image. This noise is one of the factors that reduces object detection performance. This paper aims to improve object detection performance through distortion and rotation augmentation of training data. Object detection is detected using a Faster R-CNN.

가중치 맵을 이용한 수중 음향 신호 영상에서의 표적 강화 알고리즘 (Target Emphasis Algorithm in Image for Underwater Acoustic Signal Using Weighted Map)

  • 주재흠
    • 융합신호처리학회논문지
    • /
    • 제11권3호
    • /
    • pp.203-208
    • /
    • 2010
  • 본 논문에서는 소나 시스템을 통해 획득된 수중 음향 신호를 디지털 영상의 형태로 변환한다. 그리고 이러한 형태의 영상에 대해 영상 처리 기법을 도입하여 표적 후보를 탐지하고, 이들 영역에 대해 정보를 강화하는 알고리즘을 제안한다. 수중 표적의 탐지 과정은 우선 수중음향신호 영상에서 불규칙한 형태로 분포하고 있는 배경 잡음을 추정하여 재구성한 뒤, 원 영상에서 배경 영상을 제거하여 초기 표적 후보군을 획득한다. 또한 도플러 신호 정보를 가공하여 가중치 맵을 생성하고, 배경잡음이 제거된 영상에 대해 가중치 맵을 이용한 필터링 과정을 수행함으로써 표적 후보에 대한 정보를 보다 정확히 확보하고, 단일프레임에서의 표적 후보 정보를 강화한다. 본 논문에서는 시뮬레이션으로 획득된 수중음향신호에 대해 제안된 알고리즘을 적용하여, 불규칙적으로 발생하게 되는 잡음이 대부분 제거됨을 확인하였고, 필터링 및 표적 탐지 과정을 통해 수중음향신호 영상에서 표적이 더욱 명확히 표시됨을 확인하였다.

수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리 (Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure)

  • 신성렬;임민혁;김광은
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.

딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션 (Segmentation of underwater images using morphology for deep learning)

  • 이지은;이철원;박석준;신재범;정현기
    • 한국음향학회지
    • /
    • 제42권4호
    • /
    • pp.370-376
    • /
    • 2023
  • 수중영상은 수중 잡음과 낮은 해상도로 표적의 형상과 구분이 명확하지 않다. 그리고 딥러닝의 입력으로 수중영상은 전처리가 필요하며 Segmentation이 선행되어야 한다. 전처리를 하여도 표적은 명확하지 않으며 딥러닝에 의한 탐지, 식별의 성능도 높지 않을 수 있다. 따라서 표적을 구분하며 명확하게 하는 작업이 필요하다. 본 연구에서는 수중영상에서 표적 그림자의 중요성을 확인하고 그림자에 의한 물체 탐지 및 표적 영역 획득, 그리고 수중배경이 없는 표적과 그림자만의 형상이 담긴 데이터를 생성하며 더 나아가 픽셀값이 일정하지 않은 표적과 그림자 영상을 표적은 흰색, 그림자는 흑색, 그리고 배경은 회색의 3-모드의 영상으로 변환하는 과정을 제시한다. 이를 통해 딥러닝의 입력으로 명확히 전처리된 판별이 용이한 영상을 제공할 수 있다. 또한 처리는 Open Source Computer Vision(OpenCV)라이브러리의 영상처리 코드를 사용했으면 처리 속도도 역시 실시간 처리에 적합한 결과를 얻었다.

항법 적용을 위한 수중 소나 영상 처리 요소 기법 비교 분석 (Comparative Study of Sonar Image Processing for Underwater Navigation)

  • 신영식;조영근;이영준;최현택;김아영
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.214-220
    • /
    • 2016
  • Imaging sonars such as side-scanning sonar or forward-looking sonar are becoming fundamental sensors in the underwater robotics field. However, using sonar images for underwater perception presents many challenges. Sonar images are usually low resolution with inherent speckled noise. To overcome the limited sensor information for underwater perception, we investigated preprocessing methods for sonar images and feature detection methods for a nonlinear scale space. In this paper, we focus on a comparative analysis of (1) preprocessing for sonar images and (2) the feature detection performance in relation to the scale space composition.

Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network

  • Sung, Minsung;Yu, Son-Cheol
    • Ocean Systems Engineering
    • /
    • 제10권4호
    • /
    • pp.435-449
    • /
    • 2020
  • This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

수중 촬영용 카메라의 객관적 화질 비교에 관한 연구 (Research of the Objective Quality Comparison of Underwater Cameras)

  • 하연철;박준모
    • 융합신호처리학회논문지
    • /
    • 제21권2호
    • /
    • pp.92-100
    • /
    • 2020
  • 현재 수중 촬영을 통해 물속이나 바다 속을 촬영하려는 수요는 매우 빠르게 늘어나고 있다. 방송용 수중 촬영, 레저 및 스포츠용, 군사 및 작전용 등 그 적용 범위 또한 빠르게 늘어나고 있다. 그중 특별히 우리는 선박 선저에 부착된 해양 생물들을 촬영하고 검사하기 위해 수중 드론에 사용 될 최적의 카메라를 선정한다. 3대의 카메라들을 성능적으로 비교하는데 수중 촬영이라는 특별한 상황에서 객관적 기준, 주관적 기준을 사용하여 비교 및 평가한다. 본 연구는 수중 촬영이라는 특이한 상황에서 카메라의 해상도와 같은 성능적 기준이 객관적 기준과 주관적 기준에도 부합하는지를 확인한다. 그리고 훌륭한 화질 제공에는 영상을 보정하는 필터 외에도 적절한 카메라 선정이 중요하다는 점을 보여준다. 이 연구 후에도 좀 더 다양한 카메라들을 이용한 연구를 통해서 수중 촬영용 카메라 화질 비교의 적절한 기준을 제시해 줄 수 있을 것이다.

수중드론을 활용한 선박 선저검사용 수중 카메라 영상보정에 대한 연구 (A Study on Underwater Camera Image Correction for Ship Bottom Inspection Using Underwater Drone)

  • 하연철;박준모
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.186-192
    • /
    • 2019
  • 일반적으로 운항 중인 선박이나 건조 중인 선박의 선저에는 많은 해양 생물들이 부착된다. 이러한 현상으로 인해 선박 표면의 거칠기가 증가하여 선박속도의 손실이 발생하게 되고 결과적으로 경제적 손실 및 환경오염 등의 발생을 초래하게 된다. 본 연구에서는 선박 선저에 부착된 해양생물 및 선저 상태를 검사하는 수중드론 등의 카메라 영상을 획득/활용한다. 획득된 해당 영상은 관리자 육안확인에 의해 해양 생물들에 따른 거칠기 등을 판단하게 된다. 이에 영상을 보정하는 필터 알고리즘을 원본 영상에 적용함으로써 해양 생물들 부착 여부 등에 대한 올바른 판단에 도움을 줄 수 있다. 수중 영상의 보정 알고리즘에는 다양한 필터가 필요하며, 어두운 수중 환경에 맞는 조명이 판단에 많은 영향을 미치므로 조명의 밝기 정도에 따른 해양 생물 부착 여부 판단에 대한 내용도 소개하고자 한다. 본 연구에서 적용된 보정 알고리즘 및 각 알고리즘별 조명 밝기에 따른 연구테스트 결과는 많은 분야에 적용 가능할 것으로 사료된다.