Underwater images carry information that is useful in the fields of aquaculture, underwater military security, navigation, transportation, and so on. In this research, we transmitted an underwater image through various underwater mediums in the presence of underwater turbulence and beam attenuation effects using a high-speed visible optical carrier signal. The optical beam undergoes scintillation because of the turbulence and attenuation effects; therefore, distorted images were observed at the receiver end. To understand the behavior of the communication media, we obtained the bit error rate (BER) performance of the system with respect to the average signal-to-noise ratio (SNR). Also, the structural similarity index (SSI) and peak SNR (PSNR) metrics of the received image were evaluated. Based on the received images, we employed suitable nonlinear filters to recover the distorted images and enhance them further. The BER, SSI, and PSNR metrics of the specific nonlinear filters were also evaluated and compared with the unfiltered metrics. These metrics were evaluated using the on-off keying and binary phase-shift keying modulation techniques for the 50-m and 100-m links for beam attenuation resulting from pure seawater, clear ocean water, and coastal ocean water mediums.
In the ground environment, mobile robot research uses sensors such as GPS and optical cameras to localize surrounding landmarks and to estimate the position of the robot. However, an underwater environment restricts the use of sensors such as optical cameras and GPS. Also, unlike the ground environment, it is difficult to make a continuous observation of landmarks for location estimation. So, in underwater research, artificial markers are installed to generate a strong and lasting landmark. When artificial markers are acquired with an underwater sonar sensor, different types of noise are caused in the underwater sonar image. This noise is one of the factors that reduces object detection performance. This paper aims to improve object detection performance through distortion and rotation augmentation of training data. Object detection is detected using a Faster R-CNN.
본 논문에서는 소나 시스템을 통해 획득된 수중 음향 신호를 디지털 영상의 형태로 변환한다. 그리고 이러한 형태의 영상에 대해 영상 처리 기법을 도입하여 표적 후보를 탐지하고, 이들 영역에 대해 정보를 강화하는 알고리즘을 제안한다. 수중 표적의 탐지 과정은 우선 수중음향신호 영상에서 불규칙한 형태로 분포하고 있는 배경 잡음을 추정하여 재구성한 뒤, 원 영상에서 배경 영상을 제거하여 초기 표적 후보군을 획득한다. 또한 도플러 신호 정보를 가공하여 가중치 맵을 생성하고, 배경잡음이 제거된 영상에 대해 가중치 맵을 이용한 필터링 과정을 수행함으로써 표적 후보에 대한 정보를 보다 정확히 확보하고, 단일프레임에서의 표적 후보 정보를 강화한다. 본 논문에서는 시뮬레이션으로 획득된 수중음향신호에 대해 제안된 알고리즘을 적용하여, 불규칙적으로 발생하게 되는 잡음이 대부분 제거됨을 확인하였고, 필터링 및 표적 탐지 과정을 통해 수중음향신호 영상에서 표적이 더욱 명확히 표시됨을 확인하였다.
Journal of Advanced Marine Engineering and Technology
/
제33권2호
/
pp.344-354
/
2009
Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.
수중영상은 수중 잡음과 낮은 해상도로 표적의 형상과 구분이 명확하지 않다. 그리고 딥러닝의 입력으로 수중영상은 전처리가 필요하며 Segmentation이 선행되어야 한다. 전처리를 하여도 표적은 명확하지 않으며 딥러닝에 의한 탐지, 식별의 성능도 높지 않을 수 있다. 따라서 표적을 구분하며 명확하게 하는 작업이 필요하다. 본 연구에서는 수중영상에서 표적 그림자의 중요성을 확인하고 그림자에 의한 물체 탐지 및 표적 영역 획득, 그리고 수중배경이 없는 표적과 그림자만의 형상이 담긴 데이터를 생성하며 더 나아가 픽셀값이 일정하지 않은 표적과 그림자 영상을 표적은 흰색, 그림자는 흑색, 그리고 배경은 회색의 3-모드의 영상으로 변환하는 과정을 제시한다. 이를 통해 딥러닝의 입력으로 명확히 전처리된 판별이 용이한 영상을 제공할 수 있다. 또한 처리는 Open Source Computer Vision(OpenCV)라이브러리의 영상처리 코드를 사용했으면 처리 속도도 역시 실시간 처리에 적합한 결과를 얻었다.
Imaging sonars such as side-scanning sonar or forward-looking sonar are becoming fundamental sensors in the underwater robotics field. However, using sonar images for underwater perception presents many challenges. Sonar images are usually low resolution with inherent speckled noise. To overcome the limited sensor information for underwater perception, we investigated preprocessing methods for sonar images and feature detection methods for a nonlinear scale space. In this paper, we focus on a comparative analysis of (1) preprocessing for sonar images and (2) the feature detection performance in relation to the scale space composition.
This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.
This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.
현재 수중 촬영을 통해 물속이나 바다 속을 촬영하려는 수요는 매우 빠르게 늘어나고 있다. 방송용 수중 촬영, 레저 및 스포츠용, 군사 및 작전용 등 그 적용 범위 또한 빠르게 늘어나고 있다. 그중 특별히 우리는 선박 선저에 부착된 해양 생물들을 촬영하고 검사하기 위해 수중 드론에 사용 될 최적의 카메라를 선정한다. 3대의 카메라들을 성능적으로 비교하는데 수중 촬영이라는 특별한 상황에서 객관적 기준, 주관적 기준을 사용하여 비교 및 평가한다. 본 연구는 수중 촬영이라는 특이한 상황에서 카메라의 해상도와 같은 성능적 기준이 객관적 기준과 주관적 기준에도 부합하는지를 확인한다. 그리고 훌륭한 화질 제공에는 영상을 보정하는 필터 외에도 적절한 카메라 선정이 중요하다는 점을 보여준다. 이 연구 후에도 좀 더 다양한 카메라들을 이용한 연구를 통해서 수중 촬영용 카메라 화질 비교의 적절한 기준을 제시해 줄 수 있을 것이다.
일반적으로 운항 중인 선박이나 건조 중인 선박의 선저에는 많은 해양 생물들이 부착된다. 이러한 현상으로 인해 선박 표면의 거칠기가 증가하여 선박속도의 손실이 발생하게 되고 결과적으로 경제적 손실 및 환경오염 등의 발생을 초래하게 된다. 본 연구에서는 선박 선저에 부착된 해양생물 및 선저 상태를 검사하는 수중드론 등의 카메라 영상을 획득/활용한다. 획득된 해당 영상은 관리자 육안확인에 의해 해양 생물들에 따른 거칠기 등을 판단하게 된다. 이에 영상을 보정하는 필터 알고리즘을 원본 영상에 적용함으로써 해양 생물들 부착 여부 등에 대한 올바른 판단에 도움을 줄 수 있다. 수중 영상의 보정 알고리즘에는 다양한 필터가 필요하며, 어두운 수중 환경에 맞는 조명이 판단에 많은 영향을 미치므로 조명의 밝기 정도에 따른 해양 생물 부착 여부 판단에 대한 내용도 소개하고자 한다. 본 연구에서 적용된 보정 알고리즘 및 각 알고리즘별 조명 밝기에 따른 연구테스트 결과는 많은 분야에 적용 가능할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.