• Title/Summary/Keyword: underwater acoustic measurement

Search Result 90, Processing Time 0.029 seconds

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Analysis of Measurement Accuracy Based on Confidences for Narrow-Band Underwater Acoustic Measurement (협대역 수중음향측정을 위한 신뢰도 기반의 측정정확도 분석)

  • 도경철;최재용;이용곤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.16-22
    • /
    • 2000
  • In order to predict the performance and the usefulness of the narrow-band underwater acoustic measurement system at design stage, whose error variance is not clearly described, in this study a boundary equation to estimate the measurement accuracy is proposed based on the confidency as SNR variation. The boundary is presented as a function of SNR and the number of samples. In this paper, the measurement performance for narrow-band signal is simulated by the proposed boundary equation and the results are reviewed in the biased noise condition and separately in the background noise rejected condition.

  • PDF

Submerged Structure Surveying using Digital Image (디지털 영상을 이용한 수중구조물 측량)

  • Park Kyeong Sik;Jung Sung Heuk;An Jeong Ook;Lee Jae Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.401-408
    • /
    • 2005
  • Presently many constructions establish in underwater, but approaching to underwater constructions are difficult, for comparing with ground, underwater environment is different in media. Usually measurement methods for underwater constructions are using tapes, using depth gauges, using acoustic positioning systems. But, tapes are hard to measure the correct distance, for applying a right tension is not easy in underwater. Depth gauges have a weakness in settling, for it takes long time to do it. Acoustic positioning systems don't work well in confined spaces and cost a lot. Hence, the purpose of this study is, at first, to understand rays path in multimedia like water, glass and air. The second thing is to perform a camera calibration at the field to compare with the interior orientation parameter. And the third thing is to find out whether photogrammetry is applied for underwater object in using cube for accuracy examination. The last thing is to perform underwater photogrammetry about underwater object, which is pier model and riverbed. We came to the conclusion through this experiment that the applying underwater photogrammerty for underwater constructions and underwater ground is possible.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Design and Implementation of the Massive Underwater Acoustic Database System (대용량 해상시험자료 데이터베이스 시스템 설계 및 구현)

  • Jeong, Gi-Hyeon;Choe, Jae-Yong;Do, Gyeong-Cheol;Kim, Eung-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2020-2030
    • /
    • 1999
  • Data acquired about 53 gigabyte per a naval vessel is massive, expensive and impossible to be retested in a underwater acoustic measurement. So, it is required to manage systematically. In this paper, we mention MUADS (Massive Underwater Acoustic Database System) that was developed to store a long time, manage systematically and supply raw data and analyzed data. we analyze client/server performance based on 6003 input data individually in our MUADS that Unix server having a massive DC-jukebox and Windows clients.

  • PDF

Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization (수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석)

  • Noh, Sung Woo;Ko, Nak Yong;Kim, Tae Gyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

Development of a Broadband Self-recording Hydrophone

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A broadband self-recording hydrophone was developed to conveniently assemble a hydrophone array for use in receiving underwater sound waves. A trigger device with an electromagnetic induction coupler was also developed to control the hydrophone's operation. Main configurations and specifications of the self-recording hydrophone are introduced in this paper. We present experiment results conducted in a water tank to examine the operating behavior of the hydrophone. Some advantages are discussed when the self-recording hydrophones are used to make up a hydrophone array.

The Implementation of a Real-time Underwater Acoustic Communication System at Shallow water (천해역에서의 실시간 수중 데이터 통신 시스템 구현)

  • Baek, Hyuk;Park, Jong-Won;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.754-757
    • /
    • 2007
  • In this paper, we present an implementation and it's real-sea test of an underwater acoustic data communication system, which allows the system to reduce complexity and increase robustness in time variant underwater environments. For easy adaptation to complicated and time-varying environments of the ocean, all-digital transmitter and receiver systems were implemented. For frame synchronization the CAZAC sequence was used, and QPSK modulation/ demodulation method with carrier frequency of 25kHz and a bandwidth of 5kHz were applied to generate 10kbps transmission rate including overhead. To improve transmission quality, we used several techniques and algorithms such as adaptive beamforming, adaptive equalizer, and convolution coding/Viterbi decoding. for the verification of the system performance, measurement of BER has been done in a very shallow water with depth of 8m at JangMok, Geoje. During the experiment, image data were successfully transmitted up to about 7.4km.

  • PDF

A Study on the Effect of a Gap in Measurement of Underwater Transmission Loss by Pulse Tube (펄스 튜브를 이용한 수중 전달 손실 측정에서 간극이 미치는 영향에 대한 고찰)

  • Seo, Yun-Ho;Kim, Sang-Ryul;Kim, Jae-Seung;Byun, Yang-Heon;Seo, Youngsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • There is a gap between the inner wall of a pulse tube and an underwater acoustic material when the measurement for transmission loss by the pulse tube is carried out. In this paper, the effect, which is caused by the gap, for the measurement of transmission loss is analyzed. Transmission coefficient is derived from the ratio of the pressures between front and rear of the gap. Then, transmission loss for specimen with a gap is obtained by combining the transmission coefficients of the gap and specimen. The results of experiment and simulation for a specimen of stainless steel with 10 mm thickness are compared in order to evaluate the simulation model. Finally, simulations with respect to the gap size and transmission loss of a specimen are performed to analyze and evaluate the effect of the gap in measurement of transmission loss.

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.