• Title/Summary/Keyword: understanding of prediction

Search Result 525, Processing Time 0.028 seconds

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

An Overview of New Progresses in Understanding Pipeline Corrosion

  • Tan, M. YJ;Varela, F.;Huo, Y.;Gupta, R.;Abreu, D.;Mahdavi, F.;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.271-280
    • /
    • 2016
  • An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Korean TableQA: Structured data question answering based on span prediction style with S3-NET

  • Park, Cheoneum;Kim, Myungji;Park, Soyoon;Lim, Seungyoung;Lee, Jooyoul;Lee, Changki
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.899-911
    • /
    • 2020
  • The data in tables are accurate and rich in information, which facilitates the performance of information extraction and question answering (QA) tasks. TableQA, which is based on tables, solves problems by understanding the table structure and searching for answers to questions. In this paper, we introduce both novice and intermediate Korean TableQA tasks that involve deducing the answer to a question from structured tabular data and using it to build a question answering pair. To solve Korean TableQA tasks, we use S3-NET, which has shown a good performance in machine reading comprehension (MRC), and propose a method of converting structured tabular data into a record format suitable for MRC. Our experimental results show that the proposed method outperforms a baseline in both the novice task (exact match (EM) 96.48% and F1 97.06%) and intermediate task (EM 99.30% and F1 99.55%).

A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction

  • Kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.

Development of a Multipurpose-Oriented Environmental Prediction Model for Plant Production System - Construction of the Basic System and its Application - (식물생산시스템의 다목적 환경예측 모델의 개발 -기본 시스템 구축 및 응용-)

  • 손정익;이동근;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.126-135
    • /
    • 1993
  • Recently, the characteristic of plant production systems in Korea has been changed with the strong trends of integration and large scale, using environmental control techniques. To satisfy this change successfully, first of all, the environmental prediction inside the system must be preceded. While many environmental prediction models for plant production system were developed by many persons, each model cannot be applied to the every situation without the perfect understanding of source codes and the technical modification. The purpose of this study is building the environmental prediction model to predict and evaluate the environment inside the system numerically, and also developing the multipurpose program available for practical design. The model consisted of the basic system model, the cultivation related model and the environmental control related model. The contents of each model are as follows : the basic system model is dealing with thermal and light environments, soil environment and ventilation : the cultivation related model with soil and hydroponic cultures ; and the environmental control related model with thermal curtain and heat exchanging system. The environmental prediction model was developed using a common simulation program, PCSMP, so that it could be easily understood and modified by anyone. Finally, the model was executed and verified through comparison between simulated and measured results for soil culture, and both results showed good agreements.

  • PDF

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

State-of-the-art of Pier Scour Prediction for Design Application

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kang, Kwan-Won
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.39-59
    • /
    • 1991
  • Scour at bridge pier is a complicated three-dimensional problem involving interaction of fluld force on movable aid nonuniformily distributed sand grains. Although several analytical solution approaches, experimental research and field investigations for scout at piers have been conducted, no comprehensive and universally acceptable solution is so far available. Even though many methods and equations for predicting scour at piers are available in the literature, hydraulic and/or bridge design engineers are often at a loss over which method or equation is applicable for the specific bridge sites. To provide better understanding about scour phenomena and better predicting of scour at piers, intensive research is conducted through comprehensive review of published literature. Based on the research the state-of-the-art of pier scour prediction for design application is provided as a design guide for practicing engineers in this field. Recommendations for applying aggradation and degradation, contraction scour, and local scour prediction methods or equations are suggested. It is hoped that this paper may provide good information for the prediction of scour at piers.

  • PDF

Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine (화력발전소 증기터빈용 12Cr 강의 저주기 피로거동)

  • Kang, Myeong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.

YSIM for City and Regional Planning ("도시 및 지역계획 지원을 위한 YSIM(Yangsuk's SIMulation)")

  • 강양석
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.59-74
    • /
    • 1987
  • A prediction is an indispensable element to research of Social Science, especially in Regional planning, City planning, and Transportation planning. Since 1930s, varieties of prediction methods have been developed. In the 1980s, numerical models have been used by high-developed computers. even though the numerical models can be figured mathematically, it could not be applied practically due to it's expertness and complicateness. And even professional planners often can not use their ideas which are valuable experiences in prediction process, because they are not knowledgable for numerical models. The YSIM developed by author, is available as follows. i)Numerical modeling of professional experiences ii)Providing a foundation of large-scale model iii) Understanding of research object structure The YSIM make use of matrix to identify the system structure which is similar to the Cross Impact Method. To evaluated the YSIM availabilities, it is compared with the early developed methodologies such as KSIM, QSIM, and SPIN. As the result, it was confirmed that YSIM was more accurate in the prediction. The algorithms in YSIM is programmed for use of PCs.

  • PDF