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1  |   INTRODUCTION

Many studies have recently been conducted on machine reading 
comprehension question answering (MRQA) [1-4]. Machine 
reading comprehension (MRC) implies a machine’s ability to 
understand a given context and use it for reasoning. Question 
answering (QA) is the task of correctly answering a given 
question. For example, MRQA should be able to understand 
the context “... Hangul was completed in 1443 and published in 
1446 along with a 33-page manual titled Hunmin Jeong-eum, 
explaining what the letters are as well as the philosophical the-
ories and motives behind them...” and find the correct answer 
“Hunmin Jeong-eum” to the question “What type of writing 
system did Sejong the Great use in 1443?” in the context.

MRQA tasks include the Children’s Book Test (CBT) data-
set [1] created by Facebook, the Stanford Question Answering 

Dataset (SQuAD) [2], WikiQA [3], and the Microsoft Machine 
Reading Comprehension (MSMARCO) dataset [4] created by 
Microsoft. The CBT [1] is a cloze-style QA task that consists of 
understanding a given context and question to effectively select 
the correct answer to questions from among candidate answers. 
SQuAD [2] is a span prediction task consisting of producing a 
correct answer given accurate understanding of a passage and 
question. WikiQA [3] is a sentence detection task that consists 
of understanding a given paragraph and question to identify the 
sentence in the paragraph that contains the answer to the ques-
tion. MSMARCO [4] is a task in which a number of passages 
and a question are provided as input, and the system generates 
an answer sequence in response to the question based on its 
understanding of the passages.

The unstructured data of an MRQA task are com-
posed mainly of plaintext, such as natural language text in 
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paragraphs taken from news articles or Wikipedia. An ex-
ample of plaintext is “Sejong the Great was the fourth king 
of the Joseon dynasty of Korea,” which is quoted from the 
Wikipedia article about Sejong the Great. However, most 
documents requiring QA consist of various forms of data, 
including structured data, alongside plaintext. In recent 
years, MRQA methods for plaintext have performed com-
parably to humans [2,5], but QA methods for tables have 
not, although tabular-structured data facilitate reasoning 
similar to that enabled by plaintext data. Furthermore, a 
table can be easily understood when the tabular structure is 
utilized as features.

Unlike MRQA, which uses only plaintext, TableQA is a 
task that performs QA based on tabular data having form and 
structure. To find the correct answer to a given question in a 
table, we must build a knowledge base by constructing the 
table as a triple. This approach can be problematic because of 
the high maintenance costs that result from adding or chang-
ing fields. When a database is created for table data, the 
given question must be written in a structured query language 
(SQL) query to find the answer. Moreover, finding contents 
within a large table composed of various columns and cells 
requires a significantly complex SQL [6].

In this study, we performed a QA task for structured 
data, such as TableQA, and we present the following solu-
tions to the problems mentioned above. (a) We propose a 
deep learning model for finding the correct answer to a 
given question from tabular data. The proposed model pre-
dicts the correct answer using the span prediction style of 
MRQA in an end-to-end method. (b) We built a new dataset 
for the TableQA task and attempted to solve the task using 
the proposed model. This dataset consisted of 100 000 in-
stances of fruit- and Olympic Games–themed novice tasks 
and 100 000 instances of intermediate tasks on the topic of 
telephone services.

2  |   RELATED WORK

2.1  |  Table question answering

WikiTableQuestions [7] encodes the relationship and entities of 
semi-structured Hypertext Markup Language (HTML) tables 
into a knowledge graph, generates a graph query by parsing the 
knowledge graph with questions based on the semantic parsing 
system, and finally, searches for an answer to the given ques-
tion by ranking the graph query. The Neural Enquirer [8] uses 
randomly generated Olympic Games–themed table data, cre-
ates the embedding for a given question and table as an end-
to-end model, and returns the probability of each cell in the 
table. TabNet [9], which is a model for classifying Web table 
data types, encodes a table using recurrent neural networks 
(RNNs) [10] and convolutional neural networks (CNNs) [11] 

to extract feature vectors. Similarly to TabNet, TabVec [12] has 
been studied for crawling Web table data, preprocessing (such 
as stop-word removal and normalization) of the crawled data, 
constructing a word vector space, and classifying tables by 
clustering. Using the Allen Institute for Artificial Intelligence 
(Ai2)’s Aristo Tablestore dataset, a log-linear model was pro-
posed based on 11 features, including term frequency-inverse 
document frequency (TF-IDF) and word inclusion ratios [13]. 
Data were generated by crowdsourcing 15 000 questions for 150 
Wikipedia documents, and QA was performed on infobox using 
a multi-channel CNN [14]. Structured data were constructed in 
triples, that is, rows, columns, and values [15], and the QA was 
solved using the end-to-end memory network [16]; however, this 
system was not deemed usable because of the low test accuracy.

2.2  |  Machine reading comprehension for 
span prediction

Span prediction MRC is a task that consists of finding the 
answer to a question in a passage with a span, as exhibited 
by the SQuAD style. To solve this task, r-net [17], BiDAF 
[18], fusion-net [19], SAN [20], Unet [21], and S3-NET 
[22] have been studied. Deep learning models for MRC fre-
quently use attention pooling for questions and passages, 
such as BiDAF, to encode two sequences so that they un-
derstand each other, as well as a method for rearranging the 
encoded passage with the self-attention mechanism used 
in r-net. For each method encoding the low-, middle-, and 
high-understanding layers, fusion-net uses all the encod-
ing information when calculating the attention score of the 
model, SAN employs the ensemble effect to create various 
output results using an RNN in the output layer, and S3-
NET, which encodes passages at word- and sentence-level, 
calculates an attention score for the output. Many studies 
have been conducted on QA in the English language using 
various table datasets, but no appropriate dataset exists in 
the Korean language, and no studies have been conducted 
on Korean QA. Thus, the contributions of this study can be 
summarized as follows:

1.	 Korean TableQA dataset: We constructed a structured 
QA dataset for TableQA in the Korean language.

2.	 End-to-end deep learning model to solve TableQA: We 
used an end-to-end deep learning model to solve TableQA. 
To achieve this, we used our proposed new format for 
table planning, where table data are defined as a record 
unit. We used S3-NET, which performs well in Korean 
MRC, to solve TableQA transformed into records.

3.	 Features for TableQA: If the tabular data in the record unit 
are changed, the structure of the table collapses. To solve 
this problem, we propose the extraction of five features for 
a table and two features for MRC.
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3  |   STRUCTURED DATA FOR 
TABLEQA

In this study, we constructed a Korean TableQA dataset 
to perform MRQA on structured tabular data. The Korean 
TableQA dataset consists of 100 000 novice tasks on fruit- 
and Olympic Games–themed topics and 100 000 intermedi-
ate tasks on the topic of telecom services.

3.1  |  Dataset generation

We present two versions of synthetic datasets with different 
levels of difficulty for the QA task involving tabular docu-
ments. We first describe the data generation process for the 
novice data and then extend it to the intermediate version 
with a more complex task. Both datasets consist of table (T), 
question (Q), and answer (A) triples, where the size of each 
table Ti is denoted by (ni, mi). The answer Ai

j
 denotes a cell 

that answers the question Qi
j
. Here, i is the index for data in-

stances and j is the index for question and answer pairs.

3.2  |  Novice task: Syntactic table generation

The novice task targets tables on two subjects: the Olympic 
Games and fruit. To generate a table, we first set its size. The 
numbers of rows and columns in the table were randomly set 
at between 5 and 10. Then, we drew mi fields and ni−1 val-
ues for each field from the predefined set outlined in Table 1. 
Cell values were sampled without replacement by default, and 
sampling with replacement was performed when the number 
of possible values was less than the number of values that must 
be drawn. The cell values were created by sampling natural 
language tools and vocabulary that could be used for Level 1 to 
Level 3 questions. Ten thousand tables were generated for each 
subject; an example of a table is provided in Table 2.

3.3  |  Natural language question generation

For the novice task, the system is required to solve three levels 
of questions, as displayed in Table 3. In Table 3, Q denotes ques-
tion, C denotes condition, and A denotes answer position. For 
each table, 10 questions were created with templates that were 
preset with syntactic variation. In total, we generated 60  000, 
20 000, and 20 000 questions for Levels 1, 2, and 3, respectively.

3.4  |  Intermediate task

The data for the novice tasks were created with rules 
such that questions were asked following a certain 

template and were therefore unnatural and grammati-
cally incorrect. Consequently, we created the interme-
diate dataset with more natural questions, targeting the 
tables on telephone services, as shown in Table 4. The 
process for creating the table was the same as that for 

T A B L E  1   Possible numbers of values for each field and its 
respective type

Olympics

Field name Count Type

Country 204 Cat

City 184 Num

Year 87 Num

Season 2 Num

No. of participants 50 Cat

No. of cheerleaders 800 Num

Advertising revenue 8000 Num

Popular sport 38 Cat

Audience's response rate 101 Num

Stadium area 9000 Num

Ticket selling rate 41 Num

Medal-winning country 204 Cat

Ranking 50 Num

Athletic ranking 50 Num

Asian participation rate 39 Num

Gold medal event 38 Cat

TV station 4 Cat

Viewer ratings 60 Num

Main MC 37 Cat

Singer 29 Cat

Fruits

Field name Count Type

Fruit 16 Cat

Country of origin 204 Cat

City of origin 184 Cat

Production month 12 Num

Production amount 49 000 Num

No. of likes 9900 Num

Shipping season 4 Cat

Price 8000 Num

Size 99 Num

Quality level 8 Num

Preference 99 Num

Brand 5 Cat

Channel 8 Cat

Selling amount 970 Num

Selling rate 300 Num
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the novice task; however, to provide greater realism, the 
first and second columns specified the product name and 
price, respectively, as shown in Table  5. It was neces-
sary to include the “Name” and “Price” fields in every 
table to reflect reality, but the remaining fields were ran-
domly selected and placed in various orders. We created 
the table form by referring to the product description on 
the actual telephone service Website. The intermediate 
task table was designed such that each field contains a 
variety of values for a rich vocabulary and a variety of 
numbers. The number of possible values for each col-
umn is accurately indicated in the list in Table 4. All the 
cell values in the table were randomly selected within 
their respective ranges.

To generate questions, we imposed lexical variations 
so that the field name was not directly used in the ques-
tion and provided more diverse syntactic variations than 

in the novice task. Furthermore, we added two more 
complex levels of queries, as outlined in Table  6. For 
the intermediate task, we generated 10  000 tables and 
20 000 questions for each level. Finally, various vocabu-
lary words and phrases were used by capitalizing on the 
characteristics of the Korean language. For example, we 
considered colorful sentences, such as honorific and ca-
sual speech, and varied vocabulary for synonyms, such 
as ? (How much should I pay in a month?)”, 

? (How much is a fee?).” Additionally, there 
were some questions that did not directly mention field 
names, such as “ ? (How much?)” and “ ? 
(Who advertises?),” and therefore, inference as to which 
column the subject of the question corresponds in the 
given table was necessary. In Table 6, Q denotes ques-
tion, C denotes condition, and A denotes answer posi-
tion in the table.

T A B L E  2   Example of a table generated in the fruit domain. As shown, letters representing the unit can be stored in numeric columns

Fruit Country of origin Price Size Preference Selling rate Shipping season

Orange Belgium 1329 won 9 Rank 32 12.9% Spring

Apple Korea 4302 won 58 Rank 9 0.7% Winter

Cherry US 8520 won 14 Rank 89 20.0% Winter

Mango Jamaica 6341 won 57 Rank 3 2.3% Spring

T A B L E  3   Example of the three levels of question templates 
generated for a novice task. The field names or values corresponding 
to the parentheses were sampled to generate questions according to the 
template; columns shown in blue can be extracted only from numeric 
fields

T A B L E  4   Data fields for telephone services randomly utilized for 
the intermediate task. Field names were extracted from actual Korean 
carrier Websites

Field name Count Type

Name 600 Cat

Price 91 Num

Services 21 Cat

Terms of agreement 4 Cat

No. of Messages 101 Num

Model 40 Cat

Calls available 76 Num

Freebies 21 Cat

Data plan 246 Num

Available groups 6 Cat

Internet discount 101 Num

Payment method 6 Cat

Mobile discount 101 Num

Combined services 4 Cat

Combined discount 19 Num

Carrier 3 Cat

Tax 10 Num

Membership 5 Cat

Data speed limit 3 Cat
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4  |   KOREAN TABLEQA USING  
S3-NET

The Korean TableQA dataset consists of questions (Q), tables 
(T), and answers (Y). Each question contains m words, that is, 
Q=

{

q1, q2, … , qm

}

, and each table consists of r rows and c 
columns, that is, T =

{

t1, 1, t1, 2,… , t(1,c),… , t(r,c)

}

. The cor-
rect answer for each question can be identified by row and col-
umn, such as Y =

{

Prow, Pcolumn

}

. To use the S3-NET model to 
solve the Korean TableQA, we performed training and infer-
ence by modifying the tabular data into an unstructured format. 
Table T was changed into a record unit to be formed into sen-
tences, and the records created were concatenated to form one 
passage (P). The created passages comprised n words, that is, 
P=

{

p1, p2,… , pn

}

, and the positions of the correct answers, 
which are indicated by rows and columns, were also changed 
corresponding to the index of the modified passages. The new 
correct answer positions were then defined as the start and end 
boundaries of the correct answers, as in the span prediction 
style of SQuAD, defined as Y =

{

Pstart, Pend

}

. The method for 
changing tabular data into record units is as follows:

For a given table, as exemplified in Figure 1, the two-di-
mensional tabular data are composed of rows and columns. 
Each cell in the row is concatenated with the head in the same 
column to form a “head cell,” which is transformed into a re-
cord unit as follows:

Changing tabular data into a record unit:
KR: [“ ”, 

“ ”].
EN: [“Most medal country Turkey season winter audience 

response 0.1”, “Most medal country Italy season summer au-
dience response 0.9”].

4.1  |  Features

As tabular data, Korean TableQA extracts features according 
to TableQA. The record example derived from the tabular data 
in Figure 1, that is, “Most medal country Turkey season winter 
audience response 0.1,” is also an example of feature extraction.

•	 Row position: A word in a record is a feature that can indi-
cate the position of the row in the table. For example, “row-1 
row-1 row-1 row-2 row-1 row-2 row-1 row-1 row-2.”

•	 Column position: A word in a record is a feature that can 
indicate the position of the column in the table. For exam-
ple, “col-1 col-1 col-1 col-1 col-2 col-2 col-3 col-3 col-3.”

•	 Boundary feature: Records use head-B, head-I, cell-B, 
and cell-I tags to distinguish each head and cell boundary. 
For example, “head-B head-I head-I cell-B head-B cell-B 
head-B head-I cell-B.”

•	 Head embedding: Head embedding is based on the word 
dictionary. It consists of the morphemes of the head shown 
in the table, according to the training performed.

•	 Min/max feature: The min/max feature distinguishes the 
minimum and maximum numeric values for the same attri-
bute in a given table.

Additionally, we used features such as a character CNN, 
exact match (EM), term frequency, and aligned question em-
bedding [17]. They are detailed as follows:

•	 Exact match: EM is a binary feature that outputs 1 if 
each word in the passage is included in the question and 0 
otherwise.

•	 Term frequency: Term frequency (tf) is a feature that calcu-
lates the frequency of each word for a passage or question. tf is 
normalized to the length of the inputted passage in question.

•	 Aligned question embedding: The question sentence is 
encoded and then an alignment vector is generated.

The weighted sum with the encoding-hidden state of the 
question sentence is then calculated to create a question vec-
tor q. The question vector q is given by  (1) and is used to 
output the correct answer in the output layer.

4.2  |  Model: S3-NET

S3-NET is the MRC model of a hierarchical module using 
self-attention matching based on a simple recurrent unit 

(1)q=
∑

j

bju
Q

j
,

(2)bj =

exp
�

w ⋅u
Q

j

�

∑

j� exp
�

w ⋅u
Q

j�

� .

T A B L E  5   Example of a table generated for the telephone service domain. As shown, letters representing the unit can be stored in numeric columns

Name Price Data plan Carrier Tax Model No. of Messages

Rainbow kids-56 53 000 won 0.8 GB A-telecom 2650 won Inna You 980

Compact-45 33 000 won 13.7 GB A-telecom 3630 won Chaewon Moon 520

Advanced-56 63 000 won 17.8 GB B-telecom 3780 won Seongjae Yook 580

Rainbow army-C 49 000 won 20.3 GB A-telecom 7350 won Astro 100
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(SRU) [23]. In this study, we used S3-NET, as illustrated in 
Figure 2, to solve the Korean TableQA of structured tabular 
data.

S3-NET receives the word and feature embedding as 
input and concatenates them together to form P and Q, re-
spectively. Subsequently, passage and question encoding are 

performed using bidirectional SRU (BiSRU) in each hidden 
layer at the word level. For the record level, record embedding 
is created from the inputted record, and the record encoding 
is performed in the hidden layer. The record-hidden state then 
performs and models the attention mechanism between the 
record and the question encoding to create a question-aware 
record representation that knows the question information. 
Passage encoding is performed and the attention mechanism 
is modeled with the question-aware and record-hidden state to 
create a record-aware passage representation that knows the 
information generated previously, such as question and record. 
Finally, modeling is performed again through the self-match-
ing network, and the start and end positions of the correct an-
swer span are outputted using the pointer network [24].

Both passage encoding (UP) and question encoding (UQ) 
are generated using BiSRU. Here, P denotes passage and Q 
denotes question. Record embedding creates a hidden state 
PR using a CNN for each record based on the word embed-
ding of the input word. The record-hidden state UR is created 
by encoding based on the generated record embedding.

In the question-record matching layer, we use a gated at-
tention–based RNN to create a record-hidden state with ques-
tion information.

The context vector CR including the question informa-
tion is calculated by the attention weights for UQ and UR and 
the weighted sum UQ. The attention weight function fattn (.) 
uses a bilinear sequence scoring method. The additional gate 
fgate (.) [17] is a function that creates a gated weight by apply-
ing a sigmoid to the input and then produces a result vector 
by an element-wise product between the input and the gated 
weight. Thus, the result vector generated through fgate (.) is 
modeled by applying BiSRU to create VR. In the record-pas-
sage matching layer, the context vector is created in the same 
manner as above, and the modeling of the context vector is 
performed by applying BiSRU.

S3-NET applies the self-attention mechanism based on 
the previously generated passage encoding-hidden state VP 
in the self-matching layer and finally performs modeling 
again.

(3)VR
=BiSRU

(

fgate

([

UR;CR
]))

,

(4)CR
=UQfattn

(

UQ, UR
)

.

(5)V
P
=BiSRU

(

fgate

([

U
P; C

P
]))

,

(6)CP
=VRfattn

(

VR, UP
)

.

(7)HP
=BiSRU

(

fgate

([

HP; CP
]))

,

(8)CP
=VPfattn

(

VP, VP
)

.

T A B L E  6   Values shown in orange can be extracted only from 
fields sampled with replacement and in blue only from numeric fields. 
As shown, the field name was queried with different words and syntax 
variants
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Based on the hierarchical pointer network, S3-NET outputs 
the start and end indexes, Pstart and Pend, of the correct answer 
corresponding to the question within the input passage.

We used the bilinear sequence from the attention score 
method in the above equation; the attention mechanism gen-
erates the final score by calculating the records and passage 
scores and multiplying them together. The hidden state of 
the record modeling is vR

t,k
, the question vector is q, and the 

hidden state of the passage modeling is hP
k
. A word index 

is denoted by k, and a record index including the word k is 
denoted by t.

5  |   EXPERIMENTS

Our experiments were performed on a computer with an Intel 
Core i7-4790 3.60-GHz CPU, 32 GB of RAM, and an NVidia 
TITAN X (Pascal) graphics card. The S3-NET test code was 
developed using PyTorch.

5.1  |  Dataset

The dataset used in the experiment was the Korean TableQA 
of LG CNS, which was divided into novice and intermediate 
tasks. Each task consisted of 100 000 total data. The novice 
task consisted of 60 000 Level 1 (Lv 1), 20 000 Level 2 (Lv 2), 
and 20 000 Level 3 (Lv 3) tasks, where the level indicates the 
difficulty of the question. The intermediate task was divided 
into five levels (Lv 1 to Lv 5), where each level consisted of 
20 000 data. The Korean TableQA of LG CNS divides the 
entire dataset according to an 8:2 ratio into training and test 
sets per question difficulty for training and evaluation, respec-
tively. Table 7 outlines the statistics of the data per task.

5.2  |  Settings

The experimental environment for Korean TableQA using 
S3-NET is described below. The activation function for both 
the RNN hidden layer and attention layer was tanh, and all 

(9)Pstart (k)∝ exp
(

vR
t,k

WR
s
q
)

exp
(

hP
k
WP

s
q
)

,

(10)Pend (k)∝ exp
(

vR
t,k

WR
e
q
)

exp
(

hP
k
WP

e
q
)

.

F I G U R E  1   Visualization of tabular data

Colunm 1 Column 2 Column 3

Row 1 / 
Head (Country with 

most medals)
(Season) (Audience response)

Row 2 (Turkey) (Winter)
0.1
(0.1)

Row 3 (Italy) (Summer)
0.9
(0.9)

F I G U R E  2   S3-NET structure for record format of TableQA



906  |      PARK et al.

RNN layers used BiSRU. The dropout of the embedding layer 
was fixed at 0.5, and the dropout of all hidden layers was set 
at 0.2. The numbers of dimensions of the character embed-
ding, word embedding, and hidden layers were 50, 100, and 
80, respectively. We performed optimization for the above 
hyper-parameters for each task of the TableQA. The word 
embedding used in this study was trained on 354 499 news 
articles and 299 768 social community data collected by LG 
CNS using continuous bag of words [25]. The character em-
bedding employed a CNN with a filter size of (2, 3, 4, 5, 6), 
where the number of dimensions of each filter was set to 30. 
Record embedding also used a CNN with a filter size of (3, 
4, 5), where the number of dimensions of each filter was set 
to 60. We used Adam [26] for training and set the learning 
rate to 0.001. The placement size of the mini-batch was set 
to 150, and the optimal model was obtained by performing 
the evaluation with each development set for each epoch. We 
used the EM and F1 scores as the performance measures [2].

5.3  |  Novice task

The novice task targeted tables on two subjects: the 
Olympic Games and fruit. We first identified the best fea-
tures of the novice task through feature ablation. Table 8 
presents the F1 score and feature ablation results for the 
novice task in Korean TableQA. The F1 score of S3-NET 
using all the proposed features was 97.06%. In terms of 
feature ablation, removal of head and question embedding 
reduced the performance by 0.08% to 96.98%. Removal of 
the boundary feature further decreased the performance 
by 0.10% to 96.96%. The min/max feature is significant 
because its removal led to a 1.01% performance decrease. 
Removal of the column position feature dramatically in-
creased the performance degradation to 10.11%, leading to 
an F1 score of 86.95%. Similarly, EM & term frequency 
and row position removal initiated 10.81% and 12.66% de-
creases in the F1 score to 86.25% and 84.40%, respectively, 
demonstrating the significance of these features in terms 
of solving TableQA. Finally, the removal of character 

embedding (char CNN) generated the greatest difference, 
15.40%, which is possibly due to the inclusion of the nu-
merical value in the table data causing a large ratio of un-
known words.

Table  9 lists the performances according to question 
difficulty for S3-NET on TableQA. At Level 1, the perfor-
mance scores of EM and F1 were 97.65% and 98.06%, re-
spectively. For Level 2, the EM and F1 scores were 94.95% 
and 95.53%, respectively, and for Level 3 the scores were 
94.53% and 95.58%, respectively. Thus, the results indicate 
that an increase in the question complexity level decreases 
the performance scores, supporting the logical assump-
tion that question complexity is proportionally related to 
the difficulty the machine encounters in understanding the 
question.

We performed an additional experiment on the passage 
length, as illustrated in Figure 3, to examine the change in 
performance in the novice task for various passage lengths of 
S3-NET. Table 10 provides statistics for the ranges of passage 
lengths when the table was transformed into record format 
for the novice task test set. Given the length of the longest 
and shortest passages were 408 and 303 words, respectively, 
we evaluated the performance in terms of passage length in 
20-word increments, beginning with 300 words. The perfor-
mance for short passages, specifically documents of less than 
340 words, was the best, and the performance decreased with 
the increasing passage length. The performance for passage 
lengths ranging from 0 to 320 words was low as a result of 
insufficient training data.

5.4  |  Intermediate task

The intermediate task contained more natural questions 
than the novice task and targeted tables related to telephone 
services. Our experiments on the intermediate task subse-
quently provided optimizations for the number of hidden 
layer dimensions, the number of stack layers for question, 
passage encoder, and modeling layers, the dropout for RNN, 

T A B L E  7   Numbers of tables and questions generated for each 
data item

Novice Intermediate

No. of Tables 10 000 10 000

No. of Questions 100 000 100 000

No. of Lv 1 60 000 20 000

No. of Lv 2 20 000 20 000

No. of Lv 3 20 000 20 000

No. of Lv 4 N/A 20 000

No. of Lv 5 N/A 20 000

T A B L E  8   Feature ablation of the novice task (%)

Model F1 Δ

S3-NET for TableQA 97.06 N/A

- head embedding 96.98 −0.08

- question embedding 96.98 −0.08

- boundary feature 96.96 −0.10

- min/max feature 96.05 −1.01

- column position 86.95 −10.11

- EM & term frequency 86.25 −10.81

- row position 84.40 −12.66

- char CNN 81.66 −15.40
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and RNN type. We also performed feature ablation. The op-
timization of the hidden layer dimension number is charac-
terized in Table 11. As a result, EM was 99.24% and F1 was 
99.52%, which are the highest performances achieved.

The optimization of the number of stack layers for each 
question, passage encoder, and modeling layer depends on 
the optimization of the number of hidden layer dimensions. 
As evidenced in Table 11, 80 dimensions yielded the highest 
performance. The optimization of the number of stack lay-
ers is described in Table 12. When the numbers of question 
encoders, passage encoders, and modeling layers were 3, 3, 
and 2, respectively, the performance peaked with an EM of 
99.30% and F1 of 99.55%.

The dropout optimization of the hidden layer of S3-NET is 
characterized in Table 13, given 80 hidden layer dimensions, 
3-stack question encoders, 3-stack passage encoders, and 
2-stack modeling layers. The experimental results showed the 
best performance for a dropout of 0.2.

Table 14 gives the performance of each RNN type of S3-
NET. The S3-NET employed in this study is based on SRU; 
when SRU was used, the EM and F1 scores peaked at 99.30% 
and 99.55%, respectively. The training time for SRU is the 
fastest at 696  seconds, approximately 1.26 and 1.62 times 
faster than that for the gated recurrent unit (GRU) [27] and 
long short-term memory (LSTM) [28] models, respectively. 

Similarly, the test time for SRU was fastest at 127 seconds, 
approximately 1.54 and 1.49 times faster than for GRU and 
LSTM, respectively.

In Table 15, we present the results of feature ablation 
on the previously optimized S3-NET. With removal of both 
question and head embedding, decreases of 0.01 and 0.03 
were observed, respectively. The removal of row and col-
umn position features returned 0.15% and 0.31% decreases, 
respectively. Furthermore, the min/max feature was 0.44% 
lower than that of S3-NET. Elimination of the EM & term 
frequency, boundary feature, and hierarchical module re-
turned decreases in performance of 0.78%, 0.98%, and 
1.01%, resulting in scores of 98.77%, 98.57%, and 98.54%, 
respectively. The latter three features were of greater sig-
nificance to the task than the former features. Elimination 
of all the related table features, such as head embedding, 
row and column position, and min/max feature, generated 
a 1.18% reduction in performance. Thus, we suggest that 
the features proposed in this paper significantly assist in 
solving the TableQA. Finally, when character embedding 
was removed, a dramatic decrease in performance of 9.75% 
was seen.

Table 16 shows the performance according to the ques-
tion difficulty of the intermediate task when TableQA was 
performed with S3-NET. Levels 1–3 appear to solve the prob-
lem with reduced difficulty, each with performance scores 
over 99.80%. Because Levels 4 and 5 are more complicated, 
their performances were reduced, yielding an EM and F1 of 
98.53% and 99.28% for Levels 4 and 98.70% and 98.98% for 
Level 5, respectively.

We conducted an experiment using each passage length, 
as illustrated in Figure 4, to examine the change in S3-NET’s 
performance for various passage lengths in the intermediate 
task. Table 17 provides data statistics for ranges of passage 
lengths when the intermediate task dataset was changed 
from table to record format. The training set’s longest and 
shortest passage lengths were 408 and 283 words, respec-
tively, and the test set’s longest and shortest passages were 
397 and 273 words, respectively. For passages of word 
length 300 or less, the EM and F1 scores peaked at 99.57% 
and 99.69%, respectively. Passage lengths ranging from 341 
to 360 words demonstrated the lowest EM, 99.18%, while 
passage lengths ranging from 361 to 380 words returned the 
lowest F1, 99.45%.

5.5  |  Model analysis

We performed a model analysis, as outlined in Table  18, to 
confirm that the S3-NET model applied in this study conforms 
to TableQA. We tested both the novice and intermediate tasks. 
The models used for performance comparison were DrQA [3], 
BiDAF, and S2-NET [29]. The hyperparameters of the models 

T A B L E  9   Performance according to question level for the novice 
task (%)

Question level EM F1

All Levels 96.48 97.06

Lv 1 97.65 98.06

Lv 2 94.95 95.53

Lv 3 94.53 95.58

F I G U R E  3   Performance on the novice task for varying passage 
lengths

94.00

94.80

95.60

96.40

97.20

98.00
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were all allocated their optimized values as determined earlier 
in the study. Both DrQA and BiDAF trained the model using 
LSTM. In both, the encoder and modeling layer, one stack layer 
was designated for the BiDAF. The baseline model of the ex-
periment was DrQA. For the novice task, the DrQA baseline 
returned an EM of 79.08% and F1 of 83.91%. These results are 

explained by the DrQA model's use of only the static alignment 
score, such as aligned question embedding, instead of the at-
tention mechanism between the question and passage. BiDAF 
employing a bi-attention flow function exhibited an EM score 
of 80.58% and F1 score of 85.19%, which are higher values than 
those achieved by DrQA. BiDAF’s higher performance appears 
to be due to the trainable attention function of BiDAF that re-
flects the relationship between the given passage and the ques-
tion. As for S2-NET, an EM of 94.16% and F1 of 95.89% were 
achieved. S2-NET’s higher performance is considered to be a 
result of the model’s application of the attention mechanism 
for the passage and question, as in match-LSTM [30], and the 
calculation of attention weights using the self-attention mecha-
nism. Finally, the S3-NET model applied in this study performed 

T A B L E  1 0   Data statistics for passage length ranges in the novice 
task

Length range No. of training set No. of test set

0–320 N/A 300

321–340 900 3750

341–360 10 800 5550

361–80 31 700 7400

381–400 33 000 2700

401–420 3600 300

T A B L E  1 1   Optimization of the number of hidden layer 
dimensions in S3-NET (%)

Number of dimensions EM F1

80 99.24 99.52

100 98.65 99.16

150 96.92 98.08

200 98.89 99.30

Bold values mean the highest performance, one of the others.

T A B L E  1 2   Optimization of the number of stack layers for each 
module (%)

Question encoder
Passage 
encoder

Modeling 
layer EM F1

2 2 1 99.24 99.52

3 3 1 99.19 99.50

3 3 2 99.30 99.55

4 4 2 98.73 99.19

5 5 2 99.17 99.47

Bold values mean the highest performance, one of the others.

T A B L E  1 3   Optimization of dropout in the hidden layer of S3-
NET (%)

Dropout rate of hidden layer EM F1

0.1 96.86 97.42

0.2 99.30 99.55

0.3 97.44 98.36

0.4 95.76 97.35

0.5 90.04 93.59

Bold values mean the highest performance, one of the others.

T A B L E  1 4   Performance for RNN types of S3-NET

Question encoder
EM 
(%)

F1 
(%)

Training 
time (s)

Test 
time (s)

SRU 99.30 99.55 696 127

GRU 98.20 98.88 880 195

LSTM 97.03 98.07 1128 190

Bold values mean the highest performance, one of the others.

T A B L E  1 5   Feature ablation of S3-NET on the intermediate task 
(%)

Model F1 Δ

S3-NET for TableQA 99.55 N/A

– question embedding 99.54 −0.01

– head embedding 99.52 −0.03

– row position 99.40 −0.15

– column position 99.24 −0.31

– min/max feature 99.11 −0.44

– EM & term frequency 98.77 −0.78

– boundary feature 98.57 −0.98

– hierarchical module 98.54 −1.01

– all table features 98.37 −1.18

– char CNN 89.80 −9.75

T A B L E  1 6   Performance according to the question level of the 
intermediate task (%)

Question level EM F1

All Levels 99.30 99.55

Level 1 99.78 99.83

Level 2 99.80 99.91

Level 3 99.80 99.84

Level 4 98.53 99.28

Level 5 98.70 98.98
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best on the novice task, achieving an EM of 96.48% and F1 of 
97.06%, which constitute increases of 17.40% and 13.20%, re-
spectively, as compared to the baseline DrQA. Based on the 
hierarchical structure, S3-NET’s performance is sufficient, be-
cause the model adds more weight to the record with the cor-
rect answer than the other models. On the intermediate task, the 
DrQA baseline achieved an EM of 81.52% and F1 of 88.01%. 
Because aligned question embedding was employed, a static 
alignment score was used as a feature, and DrQA performed 
less well than the other models on this task. BiDAF, which com-
putes the attention weight of the context and question with the 
bi-attention flow function, returned an EM of 96.81% and F1 of 
97.91%, exhibiting a significantly high performance on the in-
termediate task. Thus, the attention mechanism evidently helps 
solve the task. The S2-NET model achieved the second highest 
EM, 97.72%, and F1, 98.54%, as well as the top performance 
with an EM of 99.30% and F1 of 99.55%. As described above, 
the attention and self-attention mechanisms of question-record 
and record-passage in S3-NET can understand the relationship 
between each component based on passage, record, and ques-
tion information. Further, because of the hierarchical model’s 
ability to find a record close to the correct answer and weight 

the attention score, S2-NET is considered the best performer for 
all tasks of TableQA.

6  |   CONCLUSION

In this paper, we defined Korean TableQA, which stores 
structured data in tabular form, and introduced novice and 
intermediate tasks. To solve the TableQA task as an end-to-
end model, we applied S3-NET and proposed five features 
suitable for TableQA. We transformed all types of tables 
in TableQA to record format, performed preprocessing for 
all records as one passage, and extracted the features from 
the table to solve TableQA using S3-NET. Our experimen-
tal results indicate that the proposed method significantly 
improves performance on the novice task, where an EM of 
96.48% and F1 of 97.06% were achieved, as well as on the 
intermediate task, where an EM of 99.30% and F1 of 99.55% 
were achieved. We confirmed the significance of the pro-
posed features through feature ablation for each TableQA 
task. In future work, we will improve the performance by 
fine-tuning the pre-trained network BERT [31]. We will also 
define the unstructured data as a single document, consisting 
of plaintext and structured data composed of tables, as in 
natural questions [32], and devise a solution for finding the 
answer to a question in a document.
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