• Title/Summary/Keyword: understanding genetic engineering

Search Result 86, Processing Time 0.029 seconds

Epidemiology, Major Risk Factors and Genetic Predisposition for Breast Cancer in the Pakistani Population

  • Shaukat, Uzma;Ismail, Muhammad;Mehmood, Nasir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5625-5629
    • /
    • 2013
  • Occurrence of breast cancer is related to genetic as well as cultural, environmental and life-style factors. Variations in diversity of these factors among different ethnic groups and geographical areas emphasize the immense need for studies in all racial-ethnic populations. The incidence of breast cancer in Pakistan is highest in Asians after Jews in Israel and 2.5 times higher than that in neighboring countries like Iran and India, accounting for 34.6% of female cancers. The Pakistani population is deficient in information regarding breast cancer etiology and epidemiology, but efforts done so far had suggested consanguinity as a major risk factor for frequent mutations leading to breast cancer and has also shed light on genetic origins in different ethnic groups within Pakistan. World-wide research efforts on different ethnicities have enhanced our understanding of genetic predisposition to breast cancer but despite these discoveries, 75% of the familial risk of breast cancer remains unexplained, highlighting the fact that the majority of breast cancer susceptibility genes remain unidentified. For this purpose Pakistani population provides a strong genetic pool to elucidate the genetic etiology of breast cancer because of cousin marriages. In this review, we describe the known breast cancer predisposition factors found in the local Pakistani population and the epidemiological research work done to emphasize the importance of exploring factors/variants contributing to breast cance, in order to prevent, cure and decrease its incidence in our country.

Molecular genetic decoding of malformations of cortical development

  • Lim, Jae Seok;Lee, Jeong Ho
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • Malformations of cortical development (MCD) cover a broad spectrum of developmental disorders which cause the various clinical manifestations including epilepsy, developmental delay, and intellectual disability. MCD have been clinically classified based on the disruption of developmental processes such as proliferation, migration, and organization. Molecular genetic studies of MCD have improved our understanding of these disorders at a molecular level beyond the clinical classification. These recent advances are resulted from the development of massive parallel sequencing technology, also known as next-generation sequencing (NGS), which has allowed researchers to uncover novel molecular genetic pathways associated with inherited or de novo mutations. Although an increasing number of disease-related genes or genetic variations have been identified, genotype-phenotype correlation is hampered when the biological or pathological functions of identified genetic variations are not fully understood. To elucidate the causality of genetic variations, in vivo disease models that reflect these variations are required. In the current review, we review the use of NGS technology to identify genes involved in MCD, and discuss how the functions of these identified genes can be validated through in vivo disease modeling.

Gene Expression Analysis of Pregnant Specific Stage in the Miniature Pig Ovary

  • Yun, Seong-Jo;Noh, Won-Gun;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The miniature pig is considered to be a better organ donor breed for xenotransplantation than other pig breeds because the size of the organs of the miniature pig is similar to that of humans. In this study, we aimed at identifying differentially expressed genes in the miniature pig ovary during pregnancy. For this, we used the miniature pig ovary model, annealing control primer-based reverse transcription polymerase chain reaction (PCR), quantitative real-time PCR (qRT-PCR), and northern blotting analysis. We identified 13 genes showing differential expression on the based of pregnancy status and validated 8 genes using qRT-PCR. We also sequenced the full-length cDNA of ephrin receptor A4 (EphA4), which had a significant difference in expression level, and validated it by northern blotting. These genes may provide a better understanding of the cellular and molecular mechanisms during pregnancy in miniature pig ovary.

3D Neighborhood Relationships of Cellular Genetic Algorithms for the Tour Guide Assignment Problem

  • Setiyani, Lina;Okazaki, Takeo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • Management optimization is very important in tourism, especially when it is related to productivity. One of the problems in management optimization is tour guide assignment. Well-arranged tour guide assignment will increase productivity while maintaining service quality. A cellular genetic algorithm is one of the methods that can be used to solve this problem. Furthermore, previous study has shown that a cellular dimension increase can lead to promising benefits for certain problems. The objective of this research is to give a clear understanding of the advantages of increasing cellular dimensionality on the tour guide assignment problem by using a cellular genetic algorithm.

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu;Ma, Wen-Li;Liang, Shuang;Zeng, Ye;Shi, Rong;Yu, Hai-Lang;Xiao, Wei-Wei;Zheng, Wen-Ling
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.593-598
    • /
    • 2009
  • Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.

A Survey of Genetic Programming and Its Applications

  • Ahvanooey, Milad Taleby;Li, Qianmu;Wu, Ming;Wang, Shuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1765-1794
    • /
    • 2019
  • Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

Application of RAPD markers for characterization of ${\gamma}$-ray-induced rose mutants and assessment of genetic diversity

  • Chakrabarty, D.;Datta, S.K.
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2010
  • Six parent and their 12 gamma ray-induced somatic flower colour mutants of garden rose were characterized to discriminate the mutants from their respective parents and understanding the genetic diversity using Random amplification of polymorphic DNA (RAPD) markers. Out of 20 primers screened, 14 primers yielded completely identical fragments patterns. The other 7 primers gave highly polymorphic banding patterns among the radiomutants. All the cultivars were identified by using only 7 primers. Moreover, individual mutants were also distinguished by unique RAPD marker bands. Based on the presence or absence of the 48 polymorphic bands, the genetic variations within and among the 18 cultivars were measured. Genetic distance between all 18 cultivars varied from 0.40 to 0.91, as revealed by Jaccard's coefficient matrix. A dendrogram was constructed based on the similarity matrix using the Neighbor Joining Tree method showed three main clusters. The present RAPD analysis can be used not only for estimating genetic diversity present in gamma ray-induced mutants but also for correct identification of mutant/new varieties for their legal protection under plant variety rights.

The Need for a New Curriculum in Clinical Genetic Education (임상유전학 교육에서 새로운 교과과정 개발의 필요성)

  • Lee, Chang-Woo
    • Korean Medical Education Review
    • /
    • v.16 no.1
    • /
    • pp.50-54
    • /
    • 2014
  • It is becoming increasingly important for medical doctors to have a thorough understanding of human genetics and the ethical, legal, and social implications of genetic testing, counseling, and treatment. As genetic engineering and technology evolves, medical doctors will find themselves called in to counsel patients about a rapidly increasing number of diseases for which genetic testing and treatments are available. Medical doctors will need to master a new set of principles and clinical skills. A lack of knowledge about these issues and problems may lead to serious, lifelong or even fatal negative effects on patients. Medical genetics has moved from the study of rare conditions to the illumination of disorders that impact the entire spectrum of medical practice. This study demonstrates several areas in which medical genetics is clearly an important tool in medical practice and the necessity of establishing new curriculum for clinical genetic education in Korea. Medical students nearing graduation may lack genetic knowledge that is essential for daily practice because genetics has little or no place in clinical teaching. Medical schools should make extensive curriculum changes to increase students' awareness of clinical genetics and its ethical implications. The medical school curriculum will need creative new approaches to keeping up with the rapid pace of evolution of clinical genetics.