• Title/Summary/Keyword: undersea

Search Result 106, Processing Time 0.028 seconds

International Practices of Naming Undersea Features and the Implication for Naming Those in the East Sea (해저지명 제정의 국제적 관례와 동해 해저지명 제정에의 시사점)

  • Choo, Sung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.630-638
    • /
    • 2006
  • This paper reviews international practices of naming undersea features, centered on SCUFN (Sub-Committee on Undersea Feature Names), and draws some implications for the newly announced undersea feature names in East Sea. Even though the history of the activities of naming undersea features in Korea is not long, recent years have witnessed considerable progress in finding and naming undersea features. In view of the guidelines for naming undersea features by SCUFN, it is evaluated that most of these names have been appropriately selected. But more justification should be made for specific terms using historical persons, symbolic term, and for two names proposed for those already listed in the Gazetteer. For further works on naming undersea features, three steps are suggested: first, conducting surveys and accumulating data on undersea features, second, naming and announcing newly found features and publicizing them, and third, making attempts to achieve international standardization of domestically announced names.

Sensitivity Analysis of Hydrodynamic Derivatives on Characteristics of Manoeuvring Motion of Manta-type Unmanned Undersea Test Vehicle (Manta형 무인잠수정의 조종운동 특성에 미치는 유체력미계수의 민감도 해석에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.603-609
    • /
    • 2008
  • Manta-type Unmanned Undersea Test Vehicle(MUUTV) is based on the same design concept as Unmanned Undersea Vehicle called Manta Test Vehicle(MTV), which was originally built and operated by the Naval Undersea Warfare Center(Lisiewicz et al., 2000, Sirmalis et al. 2001). The authors carried out the sensitivity analysis of the response of manoeuvring motion of MUUTV to changes in hydrodynamic derivatives, In order to calculate the sensitivity indices of hydrodynamic derivatives on MUUTV, the method by Sen(2000) was adopted Basically the dynamic mathematical model with six degrees of freedom by Feldman(1979) is used but a little revised, refered to Sohn et al.(2006) and some experiment in circulating water channel. Through the present research, some hydrodynamic derivatives of significance are found out, and also the numerical simulation using simplified mathematical model based on result of sensitivity analysis is ascertained to be enough for prediction of manoeuvring characteristics of MUUTV.

A Study on Numerical Simulation for Predicting of Unmanned Undersea Vehicle's Manoeuvrability (수중운동체의 조종성능 예측을 위한 수치시뮬레이션에 대한 연구)

  • Bae, Jun-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.83-85
    • /
    • 2015
  • The Purpose of this paper was to carry out basic study on development of real-time submarine-hnadling simulator. The author adopt the Unmanned Undersea vehicle(UUV), which has taken the shape of manta[1]. They call here it Unmanned Undersea Vehicle(UUV). UUV is based on the same design concept as UUV called Manta Test Vehicle, which was originally built by the Naval Undersea Warfare Center, USA[1]. The present study deals with prediction of manoeuvring motion of UUV at general drift angles and large drift angles. The dynamic mathematical model with six degrees of freedom is revised and supplemented in order to describe accurately motion of UUV. The hydrodynamic derivatives related to motion are obtained from previous work[2].

  • PDF

A Study on Manoeuvring Motion Characteristics of Manta-type Unmanned Undersea Vehicle (Manta형 무인잠수정의 조종운동 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.114-126
    • /
    • 2009
  • The authors adopt the Unmanned Undersea Vehicle(UUV), which has taken the shape of manta(Sohn et al. 2006). They call here it Manta-type Unmanned Undersea Test Vehicle(MUUTV). MUUTV is based on the same design concept as UUV called Manta Test Vehicle, which was originally built and operated by the Naval Undersea Warfare Center(Lisiewicz and French 2000, Sirmalis et al. 2001). In order to evaluate manoeuvring motion characteristics of MUUTV, numerical simulation technique has been utilized. Previous mathematical model on manoeuvring motion of MUUTV(Sohn et al. 2006) is basically adopted. Result of static experiment carried out in circulating water channel and a part of NSRDC standard model(Feldman 1979) on rotational mode are supplemented. Some of the hydrodynamic derivatives are obtained from model experiment in circulating water channel and the rest of them are estimated.

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.

Activities on Naming Undersea Features in Korea (한국에서 해저지명 부여를 위한 활동)

  • Sung, Hyo-Hyun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.600-622
    • /
    • 2006
  • The consistent use of appropriate names for the undersea features is an essential element of effective communication among ocean scientists. The correct use of names on bathymetric and nautical charts provide benefits to national and international communities. Also it is expected that naming of the marine geographical features within the territorial waters and EEZ contributes to secure the territorial waters and preserve the various marine resources. This paper will seek to addresses a variety of activities where geographic names issues for undersea features arises. For the purpose of this paper, the attention will be given upon 1) the general history of activities on naming undersea features in Korea; 2) development of the guideline for standardization of marine geographical names; 3) geomorphological characteristics of undersea features in East Sea; and 4) future plan to conduct a systematic analysis for naming marine geographical features in Korea.

An Impact Analysis of the Korea-Japan Undersea Tunnel Project;focus on Economic Potential Model Analysis (한일간 해저터널사업의 효과분석;성장잠재력 분석을 중심으로)

  • Park, Jin-Hee
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • With rapid growing of the Northeastern Asia, the interest for the connection of Infrastructure that was behind of interesting until now is getting larger. In a line of same connection, UN-ESCAP are forwarding transcontinental railway project, asian highway project et al.. And this study aimed at analysis on the effect that extended to a space by Korea-Japan undersea tunnel project. In aspect of a national land balanced-development to solve various problems such as overcrowding in capital region, unbalanced state by regions, weak exchange between South and North Korea, and weakness of national land basis to prepare for unification et al., this study consulted the economic potentiality model as a analysis method to examine an effect. In this analysis, I used 24 scenarios including all cases by combination of 3 scenarios for Korea-Japan undersea tunnel, 4 scenarios for transportation modes in the section of undersea tunnel, and 2 scenarios for adjacency infrastructure. Transportation modes in the section of undersea tunnel are railway, car-train, mixing way of railway and car-train, and mixing way of road and railway. Adjacency infrastructure applied railway and road. In all scenarios, Korea showed higher growth potentiality than Japan. Also, proposal plan C route relatively showed better in national land balanced-development than other proposal plans. The growth potentiality relatively appeared higher by buildup of a connection together with non-capital regions from the construction of Korea-Japan undersea tunnel. In aspect of Northeastern Asia, it resulted in a increasing of trade and chance of network formation in the region of Asia through infrastructure connection. But, in considering passenger and various factors that extended to the economic growth, this analysis have some limitation. Therefore, I hope that deep studies will continuously perform with various factors.

A Study on Mathematical Model of Manoeuvring Motion of Manta-type Unmanned Undersea Vehicle at Large Attack Angles (Manta형 무인잠수정의 대각도 받음각을 갖는 조종운동 수학모델에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kim, June
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.328-341
    • /
    • 2010
  • The authors adopt the Unmanned Undersea Vehicle(UUV), which has taken the shape of manta(Sohn et al. 2006). They call here it Manta-type Unmanned Undersea Test Vehicle(MUUTV). MUUTV is designed with the similar concept of UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center, USA(Lisiewicz and French 2000, Sirmalis et al. 2001, U.S. Navy 2004). The present study deals with evaluation of extreme motion of MUUTV at large attack angles. Extreme motion contains, for example, rising and depth change due to operation of hovering thrusters attached to MUUTV, lateral motion due to ocean current applied to MUUTV at low advance velocity, and so on. Numerical simulation technique has been utilized. The previous mathematical model on manoeuvring motion of MUUTV(Bae et al. 2009a) is basically adopted. Based on the results of present model experiment on extreme motion, the mathematical model is revised and supplemented in order to describe extreme motion. The hydrodynamic derivatives related to extreme motion are obtained from present model experiment and the other derivatives are referred to previous work(Bae et al. 2009a).

Trends and Plans of Subsea Space Creation and Utilization Technology (해저공간창출 및 활용기술 동향과 계획)

  • Taek Hee Han;Hyemin Hong;Sungwon Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.89-90
    • /
    • 2021
  • Undersea bases built in the deep sea are built in more extreme environments than in space. In addition, it requires the convergence of mechanics, electronics, shipbuilding, meteorology, and diving science, marine physics, chemistry, biology, and geology. Undersea base can be constructed through the fusion of various technologies. The development of extreme technology for undersea construction will be the most advanced technology in each field, and it will be applied to space and other fields, so it will be an opportunity to preempt the latest technology.

  • PDF

Mathematical Model for Dynamics of Manta-type Unmanned Undersea Vehicle with Six Degrees of Freedom and Characteristics of Manoeuvrability Response (Manta형 무인잠수정의 6자유도 운동 수학모델 및 조종응답 특성)

  • Sohn, Kyoung-Ho;Lee, Seung-Keon;Ha, Seung-Pil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.399-413
    • /
    • 2006
  • Mathematical model for coupled motions of Manta-type Unmanned Undersea Vehicle(UUV) moving with six degrees of freedom, is formulated. Furthermore, a calculation method for estimating the linear hydrodynamic derivatives acting on UUV, is proposed, and some of the estimated linear hydrodynamic derivatives are compared with results of captive model experiment. Based on linear dynamic model of UUV, a study was made to examine dynamic stability and turning ability in horizontal plane. And directional stability and required elevation rudder angles for neutrally operating in vertical plane, are also discussed.