• 제목/요약/키워드: underneath pressure

검색결과 39건 처리시간 0.031초

지혈대 내측의 포비돈-요오드 용액에 의한 화학 화상 (1예 보고) (Povidone-Iodine related Chemical Burn under the Tourniquet (A Case Report))

  • 원종경;이강
    • 대한족부족관절학회지
    • /
    • 제16권3호
    • /
    • pp.190-192
    • /
    • 2012
  • In the extremity surgery, pneumatic tourniquet and povidone-iodine solution are commonly used to provide an aseptic, bloodless field, and their complication rate has remained low. However, chemical burn under tourniquet has been rarely reported. Patients sustained burn injuries over the dependent, weight-bearing regions such as posterior neck, back, buttocks and posterior thighs. This rare adverse complication occurred in a 22-year-old man who underwent modified Brostrom operation with arthroscopic os trigonum excision. 10% povidone-iodine was used as topical antiseptic, and full thickness burn occurred underneath the area of tourniquet application. Main causes of povidone-iodine related chemical burn are considered maceration, irritation of the skin, long term use of the tourniquet and pressure. To reduce the complications like chemical burn, awareness of the risk and the possible pathogenesis as well as the preventive measures is important in surgical practice.

$41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발 (Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$)

  • 왕웬;이기근;황정수;김근영;양상식
    • 대한전자공학회논문지TC
    • /
    • 제43권1호
    • /
    • pp.33-40
    • /
    • 2006
  • Single phase unidirectional transducer (SPUDT), 리플렉터, 웨이퍼 본딩 패키지로 구성된 표면탄성파 (surface acoustic wave, SAW) 기반 압력센서가 개발되어 졌다. Coupling of Mode (COM) 모델링에 의한 소자의 시뮬레이션 및 최적 설계 변수가 얻어졌다. Finite Element Methods (FEM)를 통해 주어진 압력에 따른 다이어프램 벤딩, 스트레인/스트레스 변화 및 SAW 속도변위가 미리 예측되어졌다. 유출된 최적 설계 변수를 이용 440 MHz SAW 기반 압력센서가 41o YX LiNbO3 기판 위에서 제작되어졌다. 고 S/N 비, 임펄스 리프렉션 피크, 작은 에러 피크가 관찰되어졌다. 측정된 S11 결과는 COM 모델링 및 FEM 시뮬레이션 결과와 일치함을 보였다.

무릎 안전성 향상을 위한 컴프레션 의복의 기능적 디자인 영역 선정과 설계법 (Selection and Design of Functional Area of Compression Garment for Improvement in Knee Protection)

  • 이효정;김남임;홍경희;이예진
    • 한국생활과학회지
    • /
    • 제24권1호
    • /
    • pp.97-109
    • /
    • 2015
  • Recently, because the market for compression wear now includes all consumers, not just professionals, various items for recovery after exercising or for enhanced effects from exercise have been introduced. In this research, a systematic and stepwise design process was proposed to develop compression garment that has both functional area and appropriate pressure to protect the knee when exercising. The U-V format functional area that wraps underneath the knee was selected by considering the shape and change in the skin length when bending the knee. After the selection of the functional area, a total of seven knee design areas, including the existing product, were designed to determine the appropriate pressure. After various movements, the compression garment was ranked in terms of support of the knee, level of pressure, discomfort of seam line, and comfort of popliteal; the preferred design was selected using the quad method. Four compression wear garments were produced using two selected preferred designs; the wear evaluation was performed using a seven-point Likert scale. As a result, the optimal reduction rate of the pattern was calculated based on Ziegert and Keil's method. The applied percentage of the fabric stretch at the upper part of the crotch was 66% for the width and 50% for the length; for the lower part of the crotch, only 66% for the width was applied. Moreover, it was determined that the design of the U-V knee protection part was preferred when a 7 mm square was placed at a 1 mm distance because this not only supports the knee but also allows the fabric to accommodate various skin deformations.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

초음속 노즐에서 발생하는 응축충격파의 피동제어 (Passive control of condensation shock wave in supersonic nozzles)

  • 김희동;권순범
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Passive Prandtl-Meyer Expansion Flow with Homogeneous Condensation

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.407-418
    • /
    • 2004
  • Prandtl-Meyer expansion flow with homogeneous condensation is investigated experimentally and by numerical computations. The steady and unsteady periodic behaviors of the diabatic shock wave due to the latent heat released by condensation are considered with a view of technical application to the condensing flow through steam turbine blade passages. A passive control method using a porous wall and cavity underneath is applied to control the diabatic shock wave. Two-dimensional, compressible Navier-Stokes with the nucleation rate equation are numerically solved using a third-order TVD (Total Variation Diminishing) finite difference scheme. The computational results reproduce the measured static pressure distributions in passive and no passive Prandtl-Meyer expansion flows with condensation. From both the experimental and computational results, it is found that the magnitude of steady diabatic shock wave can be considerably reduced by the present passive control method. For no passive control, it is found that the diabatic shock wave due to the heat released by condensation oscillates periodically with a frequency of 2.40㎑. This unsteady periodic motion of the diabatic shock wave can be completely suppressed using the present passive control method.

기초분리말뚝 공법의 설계기법 개발 (Development of Design Method of Disconnected Piled Raft Foundation System)

  • 최정인;민기훈;김성호;권오성;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

방화문용 연기/열 차단막의 변위-열응력 해석에 관한 연구 (A Study on the Displacements-Thermal Stress Analysis of Smoke/Heat Interception Screen in Eire Door)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제18권2호
    • /
    • pp.73-78
    • /
    • 2004
  • 본 연구는 화재가 발생할 때 방화문과 바닥 면의 하부 틈새를 박아 연기와 열의 누설 또는 확산을 막을 수 있는 연기/열 차단막에 대하여 연구하였다. 본 연구에서는 제연구역의 차압과 화재발생 시 발생하는 연기의 유체부력에 의한 역학적인 힘과 열기류를 고려하여 유한요소 해석코드인 $ANSYS^{\circledR}$ 을 이용하여 해석하였다. 연구결과로부터 하중조건을 최소화할 수 있는 연기/열 차단막의 최적설계의 방향을 제시하였고, 연기/열 차단막의 형상설계에 활용함으로서 연기/열 차단 시스템의 엔지니어링 데이터를 구축하는데 도움이 되었다.

막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구 (A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures)

  • 전영진;김정섭;전승찬;전상준;박병수;이철주
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1003-1022
    • /
    • 2018
  • 본 연구에서는 Shield TBM 터널굴착이 기 시공된 단독말뚝의 하부를 근접하여 통과할 경우 터널 막장압에 따른 말뚝의 공학적 거동을 파악하기 위해 3차원 유한요소해석을 수행하였다. 이때 터널 막장압의 크기를 터널굴착 이전 springline 위치에서 수평토압의 25~100%로 변화시키면서 그 영향을 고찰하였다. 수치해석에서는 막장압의 변화에 따른 터널굴착으로 유발된 말뚝의 침하, 축력 및 전단응력을 고려하였다. 말뚝의 두부침하는 막장압의 크기를 가장 크게 적용한 조건이 막장압의 크기를 가장 작게 적용한 조건에 비해 약 44% 감소하여 발생하였다. 말뚝의 최대축력은 막장압의 크기를 가장 작게 적용한 조건에서 가장 크게 나타났으며, 이는 막장압의 크기를 가장 크게 고려한 조건에 대비하여 약 21% 큰 것으로 분석되었다. 터널굴착으로 인한 말뚝의 거동은 막장압의 변화에 따른 지반침하의 영향을 크게 받는 것을 알 수 있었으며, 막장압의 크기에 따른 말뚝 및 지반의 거동을 등고선을 이용하여 재분석하였다. 또한 모든 막장압 조건에 대하여 말뚝의 겉보기안전율이 1.0 이하로 산정되어 터널굴착이 인접말뚝에 유해한 영향을 끼치는 것으로 판단된다. 따라서 본 연구를 통해 말뚝의 거동에 영향을 미치는 주요인자를 막장압의 변화에 따라 심도 있게 고찰하였다.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.