Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.1.15

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme  

Kim, Seong-Hwan (Department of Materials Science and Engineering, Korea University)
Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University)
Kim, Myung-Soo (POSCO Technical Research Laboratories)
Kim, Jong-Sang (POSCO Technical Research Laboratories)
Publication Information
Corrosion Science and Technology / v.16, no.1, 2017 , pp. 15-22 More about this Journal
Abstract
An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.
Keywords
oxidation; transformation-induced plasticity steel; oxidation-reduction scheme; oxygen partial pressure; amorphous Si oxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. C. De Cooman, Curr. Opin. Solid. St. M., 8, 285 (2004).   DOI
2 J. Mahieu, S. Claessens, and B. C. De Cooman, Metall. Mater. Trans. A., 32A, 2905 (2001).
3 A. R. Marder, Prog. Mater. Sci., 45, 191 (2000).   DOI
4 B. Mintz, Int. Mater. Rev., 46, 169 (2001).   DOI
5 S. H. Kim, J. Y. Huh, S. K. Lee, R. B. Park, and J. S. Kim, Corros. Sci. Tech., 10, 6 (2011).
6 E. M. Bellhouse, A. I. M. Mertens, and J. R. Mcdermid, Mat. Sci. Eng. A., 463, 147 (2007).   DOI
7 Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int., 48, 1745 (2008).   DOI
8 Y. F. Gong, H. S. Kim, and B. C. De Cooman, ISIJ Int., 49, 557 (2009).   DOI
9 T. Van De Putte, D. Loison, J. Penning, and S. Claessens, Metall. Mater. Trans. A., 39, 2875 (2008).   DOI
10 X. S. Li, S. I. Baek, C. S. Oh, S. J. Kim, and Y. W. Kim, Scripta. Mater., 57, 113 (2007).   DOI
11 L. Cho, S. J. Lee, M. S. Kim, Y. H. Kim, and B. C. De Cooman, Metall. Mater. Trans. A, 44, 362 (2013).   DOI
12 M. Norden, M. Blumenau, T. Wuttke, and K. Peters, Appl. Surf. Sci., 271, 19 (2013).   DOI
13 L. Bordignon, X. Vanden Eynde, and R. Fransen, Rev. Metall., 101, 559 (2004).   DOI
14 W. Schwenk and A. Rahmel, Oxid. Met., 25, 293 (1986).   DOI
15 I. Parezanovic and M. Spiegel, Surf. Eng., 20, 285 (2004).   DOI
16 Y. Suzuki, T. Yamashita, Y, Sugimoto, S. Fujita, and S. Yamaguchi, ISIJ int., 49, 564 (2009).   DOI
17 T. Adachi and G. H. Meier, Oxid. Met., 27, 347 (1987).   DOI
18 M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Oxid. Met., 55, 401 (2001).   DOI
19 P. R. S. Jackson and G. R, Wallwork, Oxid. Met., 20, 1 (1983).   DOI
20 A. Atkinson and J. W. Gardner, Corros. Sci., 21, 49 (1981).   DOI
21 S. Bhagwat, S. N. Yedave, D. M. Phase, S. M. Chaudhari, S. M. Kanetkar, and S. B. Ogale, Phys. Rev. B, 40, 700 (1989).   DOI
22 K. Hoshino and N. L. Peterson, J. Phys. Chem. Solids., 46, 1247 (1985).   DOI
23 S. Hallstrom, L. Hoglund, and J. Agren, Acta. Mater., 59, 53 (2011).   DOI
24 N. Birks, G. H. Meier, and F. S. Pettit, Introduction to high temperature oxidation of metals, 2nd ed., Cambridge University Press, Cambridge (2006).