• Title/Summary/Keyword: underground wall

Search Result 350, Processing Time 0.029 seconds

A study on waterproofing method using waterproofing sheet Top-Down method in underground structure (지하 구조물에 적용되는 역타설용 방수시트재의 성능 평가에 관한 연구)

  • Song Je- Young;Kwak Kyu-Sung;Kim Jeoung-Il;Oh Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.301-304
    • /
    • 2005
  • The waterproofing in slab and wall of underground structure, have a couple of construction methods which are inside waterproofing methods for inner surface, and outside waterproofing methods for out wall and slab surface waterproofing. In resent years, however, it has been adapted the inside waterproofing construction method, as increasing of construction expenses cost and low workability and technology, nevertheless, outside waterproofing has set a most high value construction method. In inside waterproofing construction method, it is difficult to repair and assure durability and safety for concrete which has direct water-press. So, It is necessary for adopt the outside waterproofing method.

  • PDF

Interpretation of fracture network in Rock mass using borehole wall image (시추공벽 영상을 이용한 암반내 절리구조 해석)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.342-350
    • /
    • 1998
  • In this study, fracture network in rock mass was interpreted using borehole wall images obtained by televiewer. The orientation and JRC value of major joint set were evaluated adopting image analysis techniques, of which process were written in macro-program code. As linking JRC to joint stiffness using Barton-Bandis model, fracture network map was produced for application to jointed rock modelling in numerical analysis of underground structure.

  • PDF

Improvement Method of Waterproofing Design in Underground Parts of Apartments (국내 공동주택 지하 부위별 방수설계 개선 방안)

  • Lee, Jung-Hun;Kim, Bum-Soo;Song, Je-Young;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.129-130
    • /
    • 2017
  • By comparing the survey and the actual situation at hand, the results showed that the lowest floor slab, wall construction joints, and floor expansion joints were the most prone to leakage. A waterproofing design method in underground parts of apartments is proposed to prevent leakage in underground of apartments. Further research is required for the establishment of this detailed design and construction guideline in regards to this study.

  • PDF

Estimation of Disturbed Zone Around Rock Masses with Tunnel Excavation Using PS Logging (PS검층에 의한 터널굴착에 따른 주변암반의 이완영역 평가)

  • Park, Sam Gyu;Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.527-534
    • /
    • 1998
  • Excavation of underground openings changes stress distribution around the opening. The survey of this disturbed zone in excavation is very important to design and construct underground facilities, such as tunnel, gas and oil storage, power plant and disposal site of high- and low-level radioactive wastes. This paper presents a zoning of rock masses with tunnel excavation using PS logging. Compressional and shear wave velocities are measured in boreholes drilled in the tunnel wall, which was constructed with blasting and/or machine excavation. The disturbed zone in excavation can be estimated by comparing PS logging data with a tomographic image of compressional wave velocity and compressional and shear wave velocities of core samples. In the side wall of tunnel, the disturbed zone reaches 1.5 m and 1.0 m in thickness for blocks of blasting and machine excavations, respectively. In the roof of tunnel, however, the disturbed zone is 1.0 m and 0.75 m thick for the two blocks. These results show that the width of the disturbed zone is larger in the side wall of tunnel than in the roof, and 1.3 to 1.5 times larger for the blasting excavation than for the machine excavation.

  • PDF

Application of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 적용)

  • Jeong, Gyeong-Hwan;Jeong, Dong-Yeong;Park, Hun-Kook;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.775-782
    • /
    • 2004
  • Recently, the cases which are constructed close by neighboring structure or underground structure are on the increase to get the utmost out of the land exploitation of underground space in the downtown area. As the building becomes larger, the excavation depth is getting deep, and the excavation area is getting, wide too. These are frequent occasions that the application of Strut or Anchor method is difficult, because of site boundary, civil application and the ground condition. Therefore, to solve these problem, we analyze and compare design with measuring data, change the design factor and show the improvement of course through the application of self-supported diaphragm wall using counterfort technique which is a new method. It is expected to be a contribution to the suitable exploitation method of construction.

  • PDF

Stability Analysis of Upper Structures by Soil Grouting (지반 그라우팅에 의한 상부구조물의 안전성 분석)

  • Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.

Performance of Soil-Bentonite Cutoff Wall considering Defects and Formation of Bentonite Cake

  • Nguyen, The Bao;Lee, Chul-Ho;Lim, Jee-Hee;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1264-1273
    • /
    • 2010
  • Soil-bentonite cutoff walls are widely recognized to be the effective barrier for containment of wastes and groundwater. Bentonite cake is usually found remaining on the trench surface due to the use of bentonite slurry during the excavation for the cutoff wall construction. Defects also inevitably take place due to the inappropriate construction procedures or improperly mixed soil-bentonite backfill. The defects include insufficient keys and windows in the soilbentonite cutoff wall. In this study, the performance of the soil-bentonite cutoff wall is evaluated based on the flow rates through the wall. Three-dimensional numerical models were applied to simulate the groundwater flow through the soil-bentonite cutoff walls of typical geometries with consideration of the defects and bentonite cake. Results of the simulations showed that the bentonite cake has no effect in the insufficient key cases. In the keyed wall cases, the bentonite cake with very low hydraulic conductivity significantly impedes the flow of groundwater through the wall. The presence of the bentonite cake not only compromises the window defect but also renders the wall construction more effective in blocking the groundwater flow. These findings show the significance of the bentonite cake in a soil-bentonite cutoff wall construction.

  • PDF

Influence analysis of continuous pile walls on the behavior of a soil tunnel at the shallow depth through a parametric study (민감도 분석을 통한 주열식벽체가 저토피 토사터널 거동에 미치는 영향 분석)

  • You, Kwang-Ho;Yoon, Woo-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • In recent years, utilization of underground space has been increasing in various parts of the world. In particular, open-cut method is usually applied to the shallow depth excavation. However some problems such as extreme traffic congestion and unstability of adjacent structures etc. might occur. In order to cope with these problems, the M-CAM (Modified Cellular Arch Method) method was proposed to excavate soil tunnels at shallow depth with secured enough stability and minimized construction period. In this study, sensitivity analysis was performed to predict the influence of the size of CPW(Continuous Pile Wall) and ground conditions on the behavior of the tunnel. First of all, embedded depth and diameter (or thickness) of CPW, coefficient of lateral earth pressure, and ground conditions were selected as parameters that could affect tunnel stability. Meanwhile, FLAC 2D based on finite difference method was used for numerical analysis. As a result of this study, it was checked out that embedded depth among sizes of CPW had a greatest influence on the stability of a tunnel.

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

An Experimental Study on the Earth Pressure Effect of Vertical Reinforcements (연직보강재의 토압경감 효과)

  • 문경선;이상덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.457-464
    • /
    • 1999
  • The active earth pressure on the retaining wall is reduced by 3-Dimensional effects of the ground. Therefore, the test was focused on reducing the earth pressure on the retaining wall by inserting the vertical reinforcement in the backfill ground to develope the 3-Dimensional effects. Model tests in sand were peformed to measure the 3-Dimensional effects of the vertical reinforcement on the active earth pressure and its distribution and results were compared with the theories. The size of the vertical reinforcement, the geometry of the backfill space, and the wall friction of vertical reinforcement were varied. It was observed that the active earth pressure and its distribution on the underground structure were affected by the size of the vertical reforcements and wall friction.

  • PDF