• Title/Summary/Keyword: underground wall

Search Result 350, Processing Time 0.024 seconds

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

Stability Analysis of Discontinuous Rock by the Block Theory (블록이론에 의한 불연속성 암반내 터널의 안정성 해석)

  • 양형식
    • Tunnel and Underground Space
    • /
    • v.1
    • /
    • pp.66-74
    • /
    • 1991
  • The block theory with stereographic projection was applied and analyzed on the tunnel section of Samcheok Coal Mine. The results were as follows ; 1) Prevail orientations of discontinuity of sandstone around the main driftway of Samcheok Coal Mine were $(327^{\circ},\;44^{\circ}),\;(13^{\circ},\;24^{\circ}),\;(204^{\circ},\;65^{\circ})$ and $(225^{\circ},\;77^{\circ})$ in dip and dip direction, respectively. 2) Movable blocks of the site were 0110, 0111, 1110(roof), 0100, 0110, 1110(right wall) and 0001, 1001, 1011(left wall). Because of the direction of tunnel, blocks of the left wall was safe. thus key blocks were those of the roof and the right wall. Maximum height of key block was larger than the width of the tunnel but 2m of the yielded zone is expected in general for 5m width tunnel. 3) It is shown that block theory is applicable to large cavern in hard rock analysis.

  • PDF

Influence of Near Field Blasting Vibration to Earth Retaining Wall (근거리 발파진동이 흙막이 구조물에 미치는 영향)

  • Whang, Hyun-Ju;Lee, Sang-Pil;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Allowable level of blasting vibration for earth retaining wall was examined in this study. Blasting vibration was measured at near field blasting to evaluate the influence of the blasting work to earth retaining wall and rear ground. Although small scale blasting with $0.5{\sim}2.0kg$ explosives per round merely influenced to the structure and ground, but it was suggested to blast at the distance of twice the least burden considering the block movement.

Current Status of Radon Management in the 5678 Seoul Metropolitan Rapid Transit Subway (5678 서울도시철도 지하역사의 라돈 관리 현황)

  • Kim, Jun-Hyun;Yoon, Hun-Sik;Seo, Kang-Jin;Woo, Hee-Yeong;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1306-1312
    • /
    • 2011
  • Underground Subway station's air pollutants are introduced from the indoor or outdoor. And Radon is a major pollutant in the subway station. Radioactive substances Radon is occuring naturally in granite tunnel wall and underground water. Especially inert gas Radon that causes lung cancer in human is anywhere but 5678 S.M.R.T. tunnels deep and pass through the granite plaque have a lot of Radon. The Radon concentration is determined by the following reasons : radon content of soil and concrete, underground water, ventilation, pressure difference, building structure, temperature, etc. So Radon concentration is hard to predict. And we can't only ventilate owing to era of high oil prices. This study focuses on our efforts for the reduction of Radon concentration. And the purpose is to provide basically datas of specially managed 15 subway station's Radon concentration.

  • PDF

Opened Slab Based on Top-Down Method (개방형 슬래브를 이용한 지하 역타공법)

  • Jeon, Keum-Seok;Goh, Soo-Jin;Yom, Kyong-Soo;Rhim, Hong-Chul;Choi, Lin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.9-12
    • /
    • 2006
  • In recent years, construction site has developed lots of new methods and materials for Time-Cost Trade-off and improving constructability. In the case of underground construction, especially, there are many restrictions and difficulties. Shortening of the construction time in construction of underground, we use top-down method in undergroud wall. A open slab has been designed for the purpose of overcoming a weak point of former top-down method. This study based on open slab on the under ground top-down method, to more improve constructability, to introduce the effect and the performance of top-down method.

  • PDF

An Investigation for Driving Behavior on the Exit-ramp Terminal in Urban Underground Roads Using a Driving Simulator (주행 시뮬레이터를 활용한 도심 지하도로 유출연결로 접속부 주행행태 분석)

  • Jeong, Seungwon;Song, Minsoo;Hwang, Sooncheon;Lee, Dongmin;Kwon, Wantaeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.123-140
    • /
    • 2022
  • Even though driving behaviors in underground roads can be significantly different from ground roads, existing underground roads follow the design guidelines of ground roads. In this context, this study investigates the driving behaviors of the exit-ramp terminal of urban underground roads using a driving simulator. Virtual driving experiments were performed by analyzing scenarios between the underground and ground road environments. The experiments' driving behavior data for each geometry section are compared and validated through a statistical significance test. This test showed that the speed in the underground road environment is relatively low, and the LPM tends to move away from the adjacent tunnel wall. Based on these findings, this study suggests implications and feasible solutions for improving driver's safety in the exit-ramp terminal of the underground roads.

Behavior of the tunnel under the influence of a existing building during the adjacent ground excavation (근접굴착 시 기존건물의 영향을 받는 터널의 거동)

  • Lee, Jong-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.609-623
    • /
    • 2018
  • If the ground is excavated in a depth which is deeper than the adjacent existing tunnel, the behavior of the braced wall is known to be greatly affected by the presence of the tunnel. By the way it is expected to be also affected by the structure on the ground surface, There are not many examples of studies which are conducted on this subject. As a result, largel scale model tests and analysis were conducted, to measure the behavior of the tunnel under the building whose location on the ground surface was varied during the adjacent ground excavation. For this purpose, the location of a building load was varied in 0 m, 1D, 2D on ground surface. In this paper, the behaviors of braced wall and adjacent tunnel was studied. Model tests in 1 : 10 scale were performed in real construction sequences. The size of test pit was $2.0m(width){\times}6.0m(height){\times}4.0m(length)$ in dimension. As a result, it was found that the stability of the existing tunnel under the influence of the building load on the ground surface adjacent to the braced wall.

A Study on the Selection Model of Retaining Wall Methods Using Support Vector Machines (Support Vector Machine을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim, Jae-Yeob;Park, U-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.118-126
    • /
    • 2006
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. Therefore, the study has suggested the rational retaining wall method by developing the support vector machine(SVM) model as a tool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. In order to develop the SVM model, the binary SVM classifier is expanded into a multi-class classifier. and to present the feasibility of our SVM model, we considered 129 projects. Applying the 'SVM Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining.

A Study on the Selection Model of Retaining Wall Methods Using Case-Based Reasoning (사례기반추론을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim Jae-Yeob;Park U-Yeol;Kim Gwang-Hee;Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.76-83
    • /
    • 2004
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. However, a frequent change order during construction happens in Korea where different performers design and construct separately, so there is a great possibility for the change order to affect the aspects of construction cost and period which normally define the outcome of construction work. Therefore, the study has suggested the rational retaining wall method by developing the case-based reasoning model as stool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. Applying the 'CBR Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining work.

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.