• Title/Summary/Keyword: underground resources

Search Result 636, Processing Time 0.031 seconds

암반지하수 저류지 개발 전망

  • 이기철;한정상;부성안;장준영;박종철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • When the United Nation classified as Korea is the one of the water deficit country. The consensus was made that the water is the one of the precious national resources. Government increases their R/D budget trying to get more clean water bodies. For instances, 'Sustainable Water Resources Development' project is the one of major title in '21 Century Frontier Research project and there are several small research projects are undergoing by the Ministry of Agriculture and KARICO. However, when the environmental preservation issue has been get more emphasis, construction of the Surface Dam met the blockage from the environmentalists due to the problem of the their water buried area. Since the most fitting site for surface dam had been used in the past, some engineer move their focus on modification of the existing Dam's height to enlarge its capacity or dredging the bottom of the reservoir recently However dredging evoke water quality problem in return by accumulated materials at the bottom. Last year the Dong Gang Dam plan has been canceled by environmental problem in water buried area of the reservoir. With the point of this view, ground water gets more focus for the one of the useful alternative for clean water bodies. Underground dam technique which had widely applied once in the early nineteen eighties by the KARICO and attenuated due to engineering insufficiency. The technique is newly studied with the advanced engineering technique. Still groundwater usage rate in Korea is much lower comparing with the advanced countries and has many rooms to develop. Wells, under ground dam and radial collector wells are typical facilities up to now. There is little application in Korea for the Recharge Dam, which had been widely used in the advanced countries. The Recharge Dam is technique to conjunct surface water and groundwater body together, This technique had developed to increase groundwater recharge at the beginning This research is the result of the study on the possibility of the development of the new technology, Groundwater Reservoir' which was modified from Recharge Dam. Groundwater Reservoir is like a deep artificial lakes trenched in hard rock aquifer to get groundwater. The advantage of the Groundwater Reservoir is followings 1) It can be developed at the plains area, not in the deep valley 2) Huge water body can be developed without dam 3) Small buried area comparing surface water dam makes the least environmental effect. 4) Trenching cost can be substitute by the income of the selling rock debris 5) Outfit of the reservoir can be modified to match with the site prospect 6) Rock debris can be used as constructing materials 7) It can be used as groundwater recharge system when the heavy rains comes 8) The reservoir looks like scenery lake with huge clean water bodies.

  • PDF

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil (봉의꼬리를 이용한 논토양의 비소정화에 미치는 차광처리의 영향)

  • Kwon, Hyuk Joon;Cho, Ju Sung;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.26 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • This study was conducted to analyse the effectiveness of shading on growth and arsenic absorption of Pteris multifida, known as hyperaccumulator of arsenic, from paddy soils contaminated with heavy metals. Study was carried out in paddy soil polluted by arsenic near the former Janghang smelter. P. multifuda in the same growth stage was planted with $20{\times}20cm$ intervals in each experimental plot ($2{\times}2m$), and cultivated for 24 weeks. The growth of P. multifuda according to shading conditions was evaluated, the accumulated amount of arsenic in plants and arsenic variation in the soil was analyzed using ICP. In the result of this study, the growth of P. multifida cultivated under shading treatment was vigorous than non-shading. Accumulated amount of arsenic in aerial parts of P. multifida cultivated under non-shading ($169.8mg{\cdot}kg^{-1}$) was slightly higher than shading ($140.9mg{\cdot}kg^{-1}$), and those in underground part were almost the same. But the growth was great in 70% shading treatment. Therefore, arsenic contents absorbed from soils was much higher in shading treatment. Arsenic translocation rate (TR) of P. multifida was very high (0.87~0.89) regardless of shading conditions. So arsenic in soil could be efficiently eliminated by removal of aerial parts.

An experimental study on increased pressure in Shinwol rainwater storage and drainage system by undular bore (불규칙 단파에 의한 신월 빗물저류배수시설 내 압력상승에 관한 실험 연구)

  • Oh, Jun Oh;Park, Jae Hyeon;Jun, Sang Mi
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.303-312
    • /
    • 2020
  • An underground deep tunnel system is a facility in form of a reverse siphon for an under flood defense structure. In this study, the 'Shinwol rainwater storage and drainage system', which is under construction for the first time in South Korea, in order to confirm the effects of undular bore and pressurized air on the hydraulic stability of the facility in various flood scenarios a hydraulic model experiment was performed. As a result of this study, it was analyzed that the undular bore generated downstream pushed the pressurized air collected in the facility while moving upstream, and the pressure inside the pipe increased at this time. It was analyzed that the pressure during the passage of the undular bore was greater than the sum of the static pressure and dynamic pressure at the time and overflow occurred when the cross-sectional size of the pressurized air was more than 40% of the cross sectional area of the tunnel. It is determined that this is correlated with the volume of pressurized air collected in the facility, and it is determined that it is necessary to study the relationship between velocity of undular bore and the volume of pressurized air in the future.

Analysis of Tree-rings for Inference of Periods in which Slow-moving Landslides Occur (나이테 분석을 통한 땅밀림 발생 시기 추정)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.62-71
    • /
    • 2020
  • With the aim of restoring slow-moving landslide areas, this study collected fundamental data from tree-ring analysis of curved trees in these areas. We collected both upper and lower stem disks to measure the azimuth angles of six trees with growth curvature caused by tension cracks. Additionally, we analyzed various factors in the slow moving landslide area. The geological strata and main constitutive rocks in the study area were anorthosite-formed in the Precambrian period; moreover, there were no intrusive rocks, other geological strata, geological folds, or faults. The talus with weathered rocks was distributed in the upper zone of the slow-moving landslide area. According to annual-ring analysis of curved trees and terrain analysis by satellite imagery, slow-moving landslide occurred from the top to the bottom end of the slope between 1999 and 2011. There was a significant relationship (P < 0.01) between the azimuth angle of cracks caused by the slow-moving landslide and the angle of the curved trees. These results suggest that the occurrence of slow-moving landslides could be confirmed through analysis of annual-rings of curved trees, underground water levels, and terrain (by satellite imagery).

Creation of Vector Network Data with Considering Terrain Gradient for Analyzing Optimal Haulage Routes of Dump Trucks in Open Pit Mines (노천광산 덤프트럭의 최적 운반경로 분석을 위한 지형경사가 고려된 벡터 네트워크 자료의 생성 방법)

  • Park, Boyoung;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.353-361
    • /
    • 2013
  • Previous studies for analyzing optimal haulage routes of dump trucks in open pit mines mostly used raster data. However, the raster data has several problems in performing optimal route analyses: (1) the jagged appearance of haulage roads according the cell resolution often causes overestimation of the travel cost; (2) it difficult to trace the topological relationships among haulage roads. These problems can be eliminated by using vector network data, however a new method is required to reflect the performance characteristics of a dump truck according to terrain gradient changes. This study presents a new method to create vector network data with the consideration of terrain gradient for analyzing optimal haulage routes of dump trucks in open pit mines. It consists of four procedures: (a) creating digital elevation models, (b) digitizing haulage road networks, (c) calculating the terrain gradient of haulage roads, and (d) calculating the average speed and travel time of a dump truck along haulage roads. A simple case study at the Roto South pit in the Pasir open pit coal mine, Indonesia is also presented to provide proof that the proposed method is easily compatible to ArcGIS Network Analyst software and is effective in finding optimal haulage routes of dump trucks with considering terrain gradient in open pit mines.

Cause and Countermeasure of Inundation Damage in Underground Space (우리나라 지하공간 내수침수피해 원인 및 대책)

  • Cho, Jae-Woong;Choi, Woo-Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.420-420
    • /
    • 2011
  • 도시지역의 내수침수피해는 거의 매년 발생하고 있으며, 반지하와 같은 거주공간이 매우 취약한 상태이다. 특히 최근에는 지하철, 지하상가 등이 대규모 개발되고 복합네트워크화 되어 지하공간의 침수대책과 대피방안 마련이 시급한 상황이다. 일본의 경우 2000년 토카이 호우피해 후 통합유출해석 모형을 개발하였으며, 1999년 및 2003년 후쿠오카 침수피해 발생 후 특정도시하천침수피해대책법을 제정, 1999 후쿠오카, 2004년 하마마츠, 2008년 카누마 피해 후 일본 방재연구소에서는 실시간 1차원 지표범람모형과 모니터링을 통한 실시간 내수침수지도를 개발하였다. 특히 지하공간에 대해서는 "지하공간에 유입하는 범람수가 계단상 보행자게에 주는 위험성에 관한 연구" 등 실험을 바탕으로 각종 지하공간 침수대책 매뉴얼 및 지하시설의 침수시 피난확보계획 지침, 지하공간 침수대책 가이드라인 등 인명피해를 줄이고자하는 노력이 계속되어 오고 있다. 우리나라는 2006년 경기도 고양시 3호선 정발산역이 침수되었으며, 2010년 서울시 지하철 2호선 사당역 및 4호선이 침수되는 등의 지하철 침수피해와 2010년 서울시 광화문 지하상가, 인천시 부평구 우림라이온스 벨리, 우남플라자, 계양구 농협하나로마트, 서원아파트 등의 지하상가와 지하다층의 침수피해가 발생하였다. 특히 2006년 3호선 정발산역 침수는 17시간이나 지하철이 불통되었고 이로 인하여 심각한 교통 체증이 유발 되었다. 본 연구에서는 2010년 집중호우로 인한 서울, 인천지역의 지하공간 침수피해를 중심으로 최근 10년간 지하공간 침수피해사례로부터 대표적인 침수피해 원인 및 특성을 정리하였으며, 그 결과 지하공간 침수의 주요원인은 지상공간의 침수류가 지하공간으로 유입하고, 지하공간의 배수설비 용량부족, 지하공간으로의 유입을 방지하기위한 방지턱, 차수판, 침수시 비상전원 공급, 침수시 지하공간 대피 매뉴얼의 부재 등 다양한 원인이 있는 것으로 나타났다. 특히, 소방방재청에서 고시한 '지하공간 침수방지를 위한 수방기준'에 지하공간 침수 방지를 위한 각종 시설의 설치 및 대피 경로지정 등에 대한 기준이 마련되어 있으나, 지하공간 중 유동인구가 가장 많은 지하철역에서 조차 침수에 대한 행동매뉴얼이나 대피에 대한 가이드라인이 마련되지 않은 것으로 나타났다. 따라서, 지하공간 침수를 방지하기 위하여 센서를 이용한 자동 차수판과 경보기 설치, 지하공간의 사람들이 안전한 대피로를 찾을 수 있도록 지상공간 및 지하공간 출입구를 모니터링 할 수 있는 CCTV의 설치, Dry Area를 두어 비상대피 할 수 있는 공간의 마련 등 시설적인 부분에 대하여 '지하공간 침수방지를 위한 수방기준'을 더욱 강화할 필요가 있으며, 지상공간의 침수 상황을 고려한 지하공간의 대피매뉴얼 또는 가이드라인 등의 수립이 필요하다. 또한 이와 더불어 재산 및 인명피해를 더욱 효율적으로 줄일 수 있도록 실시간 예 경보를 위한 침수해석 모형의 개발이 시급하다.

  • PDF

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

A study of Spatial Multi-Criteria Decision Making for optimal flood defense measures considering regional characteristic (지역특성을 고려한 홍수방어대안 제시를 위한 공간 다기준의사결정 기법 적용 방안 연구)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.301-311
    • /
    • 2018
  • Recently, the flood inundation caused by heavy rainfall in urban area is increasing due to global warming. The variability of climate change is described in the IPCC 5th report (2014). The precipitation pattern and hydrological system is varied by climate change. Since the heavy rainfall surpassed the design capacity of the pipeline, it caused great damage in metropolitan cities such as Seoul and Busan. Inundation in urban area is primarily caused by insufficient sewer capacity and surplus overflow of river. Inundation in urban area with concentrated population is more dangerous than rural and mountains areas, because it is accompanied by human casualties as well as socio-economic damage to recover destruction of roads, brides and underground spaces. In addition, various factors such as an increase in impervious area, a short time of concentration to outlet, and a shortage of sewer capacity's lack increase flooding damage. In this study, flood inundation analysis was conducted for vulnerable areas using XP-SWMM. Also, three structural flood prevention measures such as drainage pipeline construction, detention reservoir construction, and flood pumping station construction are applied as flood damage prevention alternatives. The flood data for each alternative were extracted by dividing the basin by grid. The Spatial Compromise Programming are applied using flood assessment criteria, such as maximum inundation depth, inundation time, and construction cost. The purpose of this study is to reflect the preference of alternatives according to geographical condition even in the same watershed and to select flood defense alternative considering regional characteristics.

Growth and Yield by the Different Seeding Methods and Cultivating Root Weight in Atractylodes macrocephala Koidz (백출(Atractylodes macrocephala Koidz)의 파종방법과 종근중에 따른 생육과 수량)

  • 김수용;권오흔;조지형
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.183-188
    • /
    • 2004
  • This study was conducted to investigate the effects on the growth and yield by the different seeding methods and cultivating root weight in Atractylodes macrocephata Koidz. Seeding distances were different such as 5${\times}$5 cm, 5${\times}$10 cm, 10${\times}$10 cm, 10${\times}$15 cm by the hand seeder and 15 cm seeding in drill. Emergence date, plant height were not significantly changed with seeding space, but the number of leaf, fresh weight of above-ground part and fresh weight of root were increased in the sparse seeding compared with the dense seeding. The highest fresh root yield was 1,012 kg/10 a at the 5${\times}$5 cm. Roots yield was increased in the sparse seeding compared with the dense seeding, but the highest number of roots above 16 g yield was observed at the 10${\times}$10 cm seeding distance. Emergence date was faster 1∼3 day root weight above 6 g than that root weight 5 g. The plant height, number of stem and fresh weight of above-ground part were more increased as the root weight was heavier. The growth of underground part were more increased as the root weight was heavier, yield was increased about 27% to 112% compared with root weight above 6 g than that 134.6 kg/10 a with root 5 g.