• Title/Summary/Keyword: underground pipe

Search Result 364, Processing Time 0.033 seconds

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

A Case Study on Cold Water Damage to Rice by Installation of Underground Drain Pipe at a Mountainous Valley (산간 계곡의 지하배수관 설치에 따른 벼 냉수피해 사례분석)

  • Shim, Kyo-Moon;Jung, Myung-Pyo;Kim, Yong-Seok;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.270-274
    • /
    • 2015
  • The complaint was filed for the cold water damage to rice in accordance with the installation of buried drain pipes in the mountainous areas of the valley. Field research was conducted in order to identify and analyze relevance of cold water damage to rice with underground drain pipe installation. In conclusion, water temperature was analyzed by 0.5 to $4.5^{\circ}C$ lower than before the installation of underground drain pipes, so the cold water damage to rice was likely to occur at the rice paddy field using cold water passing through the underground drain pipe. Therefore, the rice harvest was estimated to be impossible without appropriate measures of water temperature rise such as use of small unshaded warming basins, before water is applied to fields.

A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network (GPR 영상에서 딥러닝 기반 CNN을 이용한 배관 위치 추정 연구)

  • Chae, Jihun;Ko, Hyoung-yong;Lee, Byoung-gil;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.39-46
    • /
    • 2019
  • In recently years, it has become important to detect underground objects of various marterials including metals, such as detecting the location of sink holes and pipe. For this reason, ground penetrating radar(GPR) technology is attracting attention in the field of underground detection. GPR irradiates the radar wave to find the position of the object buried underground and express the reflected wave from the object as image. However, it is not easy to interpret GPR images because the features reflected from various objects underground are similar to each other in GPR images. Therefore, in order to solve this problem, in this paper, to estimate the piping position in the GRP image according to the threshold value using the CNN (Convolutional Neural Network) model based on deep running, which is widely used in the field of image recognition, As a result of the experiment, it is proved that the pipe position is most reliably detected when the threshold value is 7 or 8.

An Assessment Pipe Damage Probability of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관의 손상확률 평가)

  • Kim, jin-jun;Rhie, Kwang-Won;Choi, hun-ung;Choi, ji-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2019
  • The frequency of major accidents which has probability of occurrence at the high pressure underground pipeline of industrial estate such an Ulsan, Yeo-ju by the other construction such as an excavation work will be compared to city gas underground pipeline to derive the basic event by the FTA and present. Also, Observe and analyze the pipe damage impact factor such as an excavation frequency, patrol cycle. As a result, It contributes to the safety improvement of high pressure gas buried pipeline due to obtain importance and sensitivity of the pipe damge impact factors.

Deformation Characteristics of Underground Pipe with In-situ Soil CLSM (현장발생토 CLSM을 이용한 지하매설관의 변형특성)

  • 박재헌;이관호;조재윤;김석남
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.129-139
    • /
    • 2004
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the small-scaled model test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM.. From the model test in the lab, it was found out that the use of CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the gound surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was smaller than those in the other cases, and the absolute value was almost zero. Judging from the small-scaled model test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing failure of the underground pipes.

RFID Applicability Study to Prevent the Third Party Accident of LNG Pipe Line (가스관 굴착사고 예방을 위한 RFID 인식기술의 적용성 연구)

  • Han, Sang-Wook;Park, Su-Ri;Kim, Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • According to the last 5 year statistics of KGS, there occurred 22 under ground gas pipe accidents per year in Korea. And about 5 accidents per year were caused from the third party digging. IT recognition technique could reduce such underground gas accidents. Among IT recognition technique, RFID is most poplar. In the air, RFID were applied to various fields including the distribution industry, but underground condition, the research and application cases of RFID were little This research was undertaken to see the applicability of RFID to underground gas pipe safety. By use of 900 MHz RFID reader and commercial metal tag, the stable recognition distance was measured in the similar underground condition of LNG pipe. Stable recognition depth of RFID tag were measured to be 50, 45, 25 cm in the medium of soil, 5 cm-thick-concrete+soil, and water respectively. The measured distances were considered to be the meaningful distance to prevent the gas pipe accidents Also the efficient ways to input the required gas pipe data to the 24 byte metal tag were proposed. Application of RFID to underground LNG supply system will not only reduce the gas accidents due to third party digging but also improve the gas line maintenance efficiency.

A Study on the Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지하 전력시설용 되메움재 활용에 관한 연구)

  • 이대수;홍성연;김경열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.665-672
    • /
    • 2002
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated for mechanical stability, environmental hazard and power transmission capacity. Also its properties are compared with the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

  • PDF

Research on Improving Quality Management for Underground Space Integration Map - Focusing on pipe-type underground facilities - (지하공간통합지도 품질관리 개선방안 연구 - 관로형 지하시설물을 중심으로 -)

  • Bae, Sang-Keun;Kim, Sang-Min;Yoo, Eun-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.221-235
    • /
    • 2020
  • The development and utilization of underground spaces are increasing as the use of land based on ground surface became limited due to rapid urbanization triggered by population growth and industrialization. Despite its merit of efficient use of limited land and space, it may contribute to occurrence of various disasters such as sinkholes and damage to underground facilities. After the sinkholes formed and occurred across the country in 2014, there has been an effort to establish Underground Space Integration Map containing 15 types of underground information. Still, there is an increasing demand to improve the quality of underground information stemmed from continuation of such events including the rupture of the hot water pipe in Goyang-si and the fire in the KT site in Ahyeon-dong, Seoul. Hereby, with the aim to improve the quality of Underground Space Integration Map, this study analyzes quality standards, regulations, and guidelines related to spatial data to improve quality inspection standards and methods included in the production rules for the Underground Space Integration Map. In particular, it suggests improvement plan for data quality management for pipe-type underground facilities, known as lifelines, which are essential part of daily life of the citizens, and the largest cause for accidents according to 15 types of underground information managed through the Underground Space Integration Map.

Probabilistic failure analysis of underground flexible pipes

  • Tee, Kong Fah;Khan, Lutfor Rahman;Chen, Hua-Peng
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.167-183
    • /
    • 2013
  • Methods for estimating structural reliability using probability ideas are well established. When the residual ultimate strength of a buried pipeline is exceeded the limit, breakage becomes imminent and the overall reliability of the pipe distribution network is reduced. This paper is concerned with estimating structural failure of underground flexible pipes due to corrosion induced excessive deflection, buckling, wall thrust and bending stress subject to externally applied loading. With changes of pipe wall thickness due to corrosion, the moment of inertia and the cross-sectional area of pipe wall are directly changed with time. Consequently, the chance of survival or the reliability of the pipe material is decreased over time. One numerical example has been presented for a buried steel pipe to predict the probability of failure using Hasofer-Lind and Rackwitz-Fiessler algorithm and Monte Carlo simulation. Then the parametric study and sensitivity analysis have been conducted on the reliability of pipeline with different influencing factors, e.g. pipe thickness, diameter, backfill height etc.