A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based Convolutional Neural Network |
Chae, Jihun
(School of Computer Science and Engineering, Kyonggi University)
Ko, Hyoung-yong (School of Computer Science and Engineering, Kyonggi University) Lee, Byoung-gil (Department of Civil Engineering, Kyonggi University) Kim, Namgi (School of Computer Science and Engineering, Kyonggi University) |
1 | D. Y. Lee, "Analysis of Sewer Pipe Defect and Ground Subsidence Risk By Using CCTV and GPR Monitering Results", J. Korean Geosynthetics Society, Vol 17, No.3, pp.47-55, 2018. https://doi.org/10.12814/jkgss.2018.17.3.047 DOI |
2 | Novo, A., Grasmueck, M., D.A. Viggiano. and Lorenzo, H. "3D GPR in Archeology: What can be gained from dense Data Acquisition and Processing?", 12th International Conference on Ground Penetrating Radar, June 16-19, 2008. https://www.researchgate.net/profile/Alexandre_Novo/publication/228986985_3D_GPR_in_Archaeology_What_can_be_gained_from_dense_data_acquisition_and_processing/links/02e7e5272aa89a0c4c000000/3D-GPR-in-Archaeology-What-can-be-gained-from-dense-data-acquisition-and-processing.pdf |
3 | M. S. Lee, N. Kim, Y. K. An, J. J. Lee, "Deep learning-based autonomous underground cavity detection using 3D GPR", 9th European Workshop on Structural Health Monitoring, July 10-13, 2018. https://www.ndt.net/article/ewshm2018/papers/0189-Kang.pdf |
4 | Krizhevsky, A., Sutskever, I. and Hinton, G. E., "ImageNet Classification with Deep Convolutional Neural Networks", NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol 1, pp.1097-1105, 2012. https://doi.org/10.1145/3065386 |
5 | Rawat, W., Wang, Z, "Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review", Neural Computation, Vol. 29, No. 9, pp.2352-2449, 2017. https://doi.org/10.1162/neco_a_00990 DOI |
6 | Simonyan, K. and Zisserman, A., "Very Deep Convolutional Networks For Large-Scale Image Recognition", International Conference on Learning Representations(ICLR), 2015. https://arxiv.org/abs/1409.1556 |
7 | Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. "Going deeper with convolutions", CVPR, Jun, pp.1-9, 2015. https://arxiv.org/abs/1409.4842 |
8 | O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge", International Journal of Computer Vision (IJCV), Vol. 115, No. 3, pp. 211-252, 2015. https://arxiv.org/abs/1409.0575 DOI |
9 | Lin, M., Chen, Q., and Yan, S., "Network in network", ICLR, 2014. https://arxiv.org/abs/1312.4400 |
10 | Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K. "Convolutional neural networks: an overview and application in radiology", Insights Into Imaging, Vol 9, No.4, pp.611-629, 2018. https://doi.org/10.1007/s13244-018-0639-9 DOI |