• Title/Summary/Keyword: underground development

Search Result 1,089, Processing Time 0.028 seconds

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

A Study on the Management of the Sectional Superficies for the Realization of 3D Cadastre (입체지적 구현을 위한 구분지상권의 관리에 관한 연구)

  • Kim, HyunYoung;Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.107-123
    • /
    • 2021
  • In recent years, due to the continuous density and urbanization of space, the expansion of awareness of rights, the need for landscape conservation, and the development of construction technology, the conventional flat land use has been deviated from the conventional flat land use, and the transmission line, urban railway, parking lot, communal district, underground shopping mall, pipeline, etc. Although 3D spatial activities are carried out in the form of 3D space, there are considerable difficulties in administration to manage the 3D use of land due to the inadequacy of related regulations. In this background, for the administration that can manage Sectional Superficies, which is a representative case of 3D spatial use of parcels, which is a registered unit of land, first, the law on the establishment and management of spatial information, and cadastral re-examination from the legal and institutional aspects Standardization of 3D space registration through amendments to the Special Act, etc. and the formation of consensus among related departments. Second, in technical and administrative aspects, the registration of Sectional Superficies based on cadastral survey results, establishment of a platform for integrated management of location and attribute data, and registration method was found to be in need of improvement. As suggested in this study, by registering and managing Sectional Superficies, it is possible to manage various 3D land use of not only ground space or surface space but also underground space. It is expected to be able to register and manage lot-based 3D land use efficiently.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

Study on the ICT Device Safety System Application Examples in Mines (광산에서의 ICT 장비 활용 및 안전시스템 운용 사례 연구)

  • Kim, Seung-Jun;Ko, Young-Hun;Kim, Jung-Gyu;Seo, Man-Keun;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.194-202
    • /
    • 2022
  • An increased number of cases have occurred in applying ICT technology in the resource development field due to factors such as safety, eco-friendliness, and low cost since the 2000s. In Korea, the 2nd mining master plan specified the significance of converging the full cycle of mining and ICT, while the 3rd mining master plan highlighted ICT and smart mining such as supporting the supply of an ICT mining device and introducing demonstrational smart mining. This study introduces the application of an ICT device and safety system operation in the Jangseong underground mine of Korea Cement Co., Ltd. Currently, Jangseong mine combines two different kinds of 3D equipment including the handheld 3D scanner and multi-station that provides both the measurement and 3D scanning to perform a 3D measurement of the mine. Taken from the 3D measurement of the mine, it is now possible to identify any hazardous areas and abnormalities in different directions and analyze the safety of the crown pillar between two stopes in different level. Besides, the real-time location tracking and communications system have established highly efficient rescue and evacuation plans to effectively deal with any accidents in the mine.

Analysis of drilling performance and shape for granite according to operating parameters of waterjet nozzles (복수의 워터젯 노즐 운용변수에 따른 화강암 천공성능 및 형상 분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Hong, Eun-Soo;Jun, Hyung-Woo;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.589-604
    • /
    • 2021
  • Waterjets for rocks have various advantages of the non-contact and eco-friendly excavation using only water and abrasive. To overcome the problems (e.g., dust and noise occurrence) of the conventional drilling methods, waterjet excavation methods are broadly used. It is advantageous to operate a couple of nozzles in order to increase the waterjet excavation efficiency. When multiple nozzles are used, it is essential to analyze the excavation performance and shape according to the nozzle operation method. In this study, nozzle angle, horizontal distance between nozzles, and standoff distance were defined as nozzle operating parameters and the excavation performance and shape were analyzed. As a result of the experiment, when the nozzle angle and standoff distance are increased, the excavation depth is decreased and the effective depth tends to be increased. In addition, based on the experimental results, the excavation shape criteria required for nozzle insertion were proposed and optimal nozzle operating parameters were derived according to the criteria. This study result is expected to be used as useful basic research in the future development of multiple waterjet nozzles for rock drilling.

Development of Expandable Steel Pipe Piles to Improve Bearing Capacity (지지력 향상을 위한 확장형 강관말뚝에 관한 연구)

  • Kim, Uiseok;Kim, Junghoon;Kim, Jiyoon;Min, Byungchan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.5-13
    • /
    • 2021
  • Expandable steel pipe piles have been developed to ensure stability and reduce construction costs during underground floor remodeling and extension work. Expandable steel pipe piles are more economical and stable than micropiles. Extensible steel pipe pile is a method of improving the performance of steel pipes by expanding steel pipes underground. In this paper, the changes in buckling strength according to the shape of steel pipes in an extended steel pipe pile were identified, a numerical analysis model was developed to determine the expended part effect of bumps due to steel pipe expansion, and the optimal steel pipe expansion was calculated through material tests. The larger the expansion diameter of the steel pipe and the greater the number of expanded part, the greater the buckling strength. Numerical results showed that the number of expanded part has a greater effect on buckling strength than the expansion rate. When the expansion rate is more than 1.2 times, it can be seen that as the number of expanded part increases, the effect of increasing buckling strength increases significantly. It was also noted that the expanded part effect of the bumps occur significantly when the extension angle is less than 45° and the expansion rate is 1.3 times higher. When the steel pipe is failure, the expanded rate is 20 to 32%, averaging 25.4%. Through the material test, it was analyzed that it is desirable to limit the maximum expansion rate for performing steel pipes to 16%.

A Method of Developing a Ground Layer with Risk of Ground Subsidence based on the 3D Ground Modeling (3차원 지반모델링 기반의 지반함몰 위험 지반 레이어 개발 방법)

  • Kang, Junggoo;Kang, Jaemo;Parh, Junhwan;Mun, Duhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.33-40
    • /
    • 2021
  • The deterioration of underground facilities, disturbance of the ground due to underground development activities, and changes in ground water can cause ground subsidence accidents in the urban areas. The investigation on the geotechnical and hydraulic factors affecting the ground subsidence accident is very significant to predict the ground subsidence risk in advance. In this study, an analysis DB was constructed through 3D ground modeling to utilize the currently operating geotechnical survey information DB and ground water behavior information for risk prediction. Additionally, using these results, the relationship between the actual ground subsidence occurrence history and ground conditions and ground water level changes was confirmed. Furthermore, the methodology used to visualize the risk of ground subsidence was presented by reconstructing the engineering characteristics of the soil presented according to the Unified Soil Classification System (USCS) in the existing geotechnical survey information into the internal erosion sensitivity of the soil, Based on the result, it was confirmed that the ground in the area where the ground subsidence occurred consists of more than 40% of sand (SM, SC, SP, SW) vulnerable to internal erosion. In addition, the effect of the occurrence frequency of ground subsidence due to the change in ground water level is also confirmed.

Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer (하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교)

  • Lee, Sungyeol;Kim, Jinyoung;Kang, Jaemo;Baek, Wonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

A Study on Freeze-Thaw Conditions Analysis of Soil Using Sentinel-1 SAR and Surface State Factor (Sentinel-1 SAR와 지표상태인자를 활용한 토양의 동결 융해 상태 분석 연구)

  • Yonggwan Lee;Jeehun Chung ;Wonjin Jang ;Jinuk Kim;Seongjoon Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.609-620
    • /
    • 2023
  • In this study, we used Sentinel-1 C-band synthetic aperture radar to calculate the surface state factor (SSF) for distinguishing the frozen-thawed state of soil. The accuracy of SSF classification was analyzed through comparison with air temperature (AT), grass temperature (GT), and underground temperature (UT). For the analysis, 116 Sentinel-1B Descending nodes observed over a period of 4 years from 2017 to 2020 were established for the central region of South Korea. AT, GT, and UT data were obtained from 23 soil moisture observation points of the Rural Development Administration during the same period, and analyzed using the 06:00 am data adjacent to the shooting time of the Sentinel-1B images. The average accuracy and F1-score for all stations were 0.63 and 0.47 for AT, 0.63 and 0.48 for GT, and 0.57 and 0.21 for UT, respectively. For winter (December-February) data, the average accuracy and F1-score were 0.66 and 0.76 for AT, 0.67 and 0.76 for GT, and 0.47 and 0.44 for UT, respectively. The increase in accuracy during winter data may be attributed to the fact that errors occurring in other seasons are not included.