DOI QR코드

DOI QR Code

A Method of Developing a Ground Layer with Risk of Ground Subsidence based on the 3D Ground Modeling

3차원 지반모델링 기반의 지반함몰 위험 지반 레이어 개발 방법

  • Kang, Junggoo (Department of Geotechnical Engineering Research, KICT) ;
  • Kang, Jaemo (Department of Geotechnical Engineering Research, KICT) ;
  • Parh, Junhwan (School of Mechanical Engineering, Korea University) ;
  • Mun, Duhwan (School of Mechanical Engineering, Korea University)
  • Received : 2021.10.19
  • Accepted : 2021.11.08
  • Published : 2021.12.01

Abstract

The deterioration of underground facilities, disturbance of the ground due to underground development activities, and changes in ground water can cause ground subsidence accidents in the urban areas. The investigation on the geotechnical and hydraulic factors affecting the ground subsidence accident is very significant to predict the ground subsidence risk in advance. In this study, an analysis DB was constructed through 3D ground modeling to utilize the currently operating geotechnical survey information DB and ground water behavior information for risk prediction. Additionally, using these results, the relationship between the actual ground subsidence occurrence history and ground conditions and ground water level changes was confirmed. Furthermore, the methodology used to visualize the risk of ground subsidence was presented by reconstructing the engineering characteristics of the soil presented according to the Unified Soil Classification System (USCS) in the existing geotechnical survey information into the internal erosion sensitivity of the soil, Based on the result, it was confirmed that the ground in the area where the ground subsidence occurred consists of more than 40% of sand (SM, SC, SP, SW) vulnerable to internal erosion. In addition, the effect of the occurrence frequency of ground subsidence due to the change in ground water level is also confirmed.

도심지에서 빈번하게 발생하는 지반함몰 사고는 지하시설물의 노후화, 지하개발 활동에 따른 지반의 교란과 지하수 변화 등 다양한 원인에 의해 발생하고 있다. 지반함몰 위험을 사전 예측하기 위해서는 지반함몰 사고에 영향을 미치는 인자들에 대한 지반 공학적 및 수리학적 검토가 필요하다. 따라서 본 연구에서는 현재 운영되고 있는 지반조사 데이터 및 지하수위 변동 정보를 이용하여 지반함몰이 발생한 연구대상 지역의 3차원 지반모델링 및 월별 지하수위에 대한 자료 분석을 수행하였으며, 이를 활용해 실제 지반함몰 발생 이력과 지반조건 및 지하수위 변화와의 관계성을 확인하였다. 또한, 기존 시추정보에서 통일 분류 체계(USCS)에 따라 제시된 흙의 공학적 특성을 지반함몰과 연관된 공학적 지표인 흙의 내부 침식 민감도로 재구성하여 지반함몰 위험도를 가시화하는데 활용하는 방법론을 제시하였다. 연구결과, 지반함몰 발생 지역의 지반은 내부 침식이 취약한 모래(SM, SC, SP, SW)가 40% 이상 구성되어 있음을 확인했으며, 지하수위 변화에 따른 지반함몰 발생빈도와의 관계성도 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 임무형 주요사업(21 주요-대 1-임무 / 지하 공간 정보 정확도 개선 및 매설관 안전관리 기술개발)의 지원을 받아 수행되었습니다.

References

  1. ArcGIS (2021), https://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
  2. Bae, Y. S., Kim, K. T. and Lee, S. Y. (2017), The road subsidence status and safety improvement plans, Korea Academy Industrial Cooperation Society, Vol. 18, No. 1, pp. 545~552 (In Korean). https://doi.org/10.5762/KAIS.2017.18.1.545
  3. Bae, Y. S., Shin, S. Y., Won, J. S. and Lee, D. Y. (2016), The road subsidence conditions and safety improvement plans in Seoul, The Seoul Institute, pp. 1~60 (in Korean).
  4. Briaud, J. L., Govindasamy, A. V. and Shafii, I. (2017), Erosion charts for selected geomaterials, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 143, No. 10.
  5. Cardoso, A., Prigiobbe, V., Giulianelli, M., Baer, E., Benedittis, J. D. and Coelho, S. T. (2006), Assessing the impact of infiltration and exfiltration in sewer systems using performance indicators: case studies of the APUSS project, Water Practice and Technology, Vol. 1, No. 1.
  6. Guo, S., Shao, Y., Zhang, T., David, Z. Z. and Zhang, Y. (2013), Physical modeling on sand erosion around defective sewer pipes under the influence of groundwater, Journal of Hydraulic Engineering, Vol. 139, No. 12, pp. 1247~1257. https://doi.org/10.1061/(asce)hy.1943-7900.0000785
  7. Kaddoura, K. and Zayed, T. (2018), An integrated assessment approach to prevent risk of sewer exfiltration, Sustainable Cities and Society, Vol. 41, pp. 576~586. https://doi.org/10.1016/j.scs.2018.05.032
  8. Kuwano, R., Hiorii, T., Kohashi, H. and Yamauchi, K. (2006), Defects of sewer pipes causing cave-ins in the road, In Proceedings of the 5th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia (USMCA), Phuket, Thailand.
  9. Meguid, M. A. and Dang, H. K. (2009), The effect of erosion voids on existing tunnel linings. Tunnelling and Underground Space Technology, Vol. 24, No. 3, pp. 278~286. https://doi.org/10.1016/j.tust.2008.09.002
  10. Rogers, C. J. (1986), Sewer deterioration studies the background to the structural assessment procedure in the sewerage rehabilitation manual, Water Research Centre, Swindon SN5 8YF, Great Britain.
  11. Ryu, Y. G. (2014), Part 01. Countermeasures against ground subsidence by water and sewage, Water journal, Vol. 124, pp. 68~73 (In Korean).
  12. Seoul Policy Map (2021), http://map.seoul.go.kr (in Korean).
  13. Tohda, J. and Hachiya, M. (2005), Response and design of buried pipelines subjected to differential ground settlement, In Proceedings of 16th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 1659~1662.
  14. Tokyo Metropolitan Government (2012), Survey results of situation of excavation about cavity below the road surface, Bureau of Construction (In Japanese).