• Title/Summary/Keyword: underground detection

Search Result 223, Processing Time 0.045 seconds

Slope Behavior Analysis Using the Measurement of GFRP Underground Displacement (GFRP 록볼트 계측을 통한 사면 거동 분석)

  • Jin, Ji-Huan;Lim, Hyun-Taek;Bibek, Tamang;Chang, Suk-Hyun;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • Although many researches related to monitoring and automatic measuring devices for early warning system during slope failure have been carried out in Korea and aboard, most of the researches have installed measuring devices on the slope surface, and there are only few researches about warning systems that can detect and warn before slope failure and disaster occurs. In this study, slope failure simulation experiment was performed by attaching sensors to rock bolts, and initial slope behavior characteristics during slope failure were analyzed. Also, the experiment results were compared and reviewed with varied slope conditions, i.e. shotcrete slope and natural slope, and varied material conditions, i.e. GFRP and steel rock bolt. This study can be used as a basic data in development of warning and alarm system for early evacuation through early detection and warning before slope failure occurs in steep slopes and slope failure vulnerable areas.

GPS Ionospheric Perturbations Following ML ≥ 5.0 Earthquakes in Korean Peninsula (한반도내 규모 5.0 이상의 지진에 의한 GPS 전리층 변동)

  • Sohn, Dong-Hyo;Park, Sun-Cheon;Lee, Won-Jin;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1531-1544
    • /
    • 2018
  • We detected the coseismic ionospheric disturbance generated by the earthquakes of magnitude 5.0 and greater in Korean Peninsula. We considered the seismic events such as Gyeongju earthquake in September 2016 with magnitude 5.8, the Pohang earthquake in November 2017 with magnitude 5.4, and the underground nuclear explosion from North Korea in September 2017 with magnitude 5.7. Although all GPS stations were not detected, the ionospheric disturbance induced by these earthquakes occurred approximately 10-30 minutes and 40-60 minutes after the events. We inferred that the time difference within each variation is due to the different focal depth and the geometry of epicenter, satellite, and GPS station. In the case of the Gyeongju earthquake, the earthquake had relatively deeper depth than the other earthquakes. However, the seismic magnitude was bigger and it occurred at nighttime when the ionospheric activity was stable. So we could observe such anomalous variations. It is considered that the ionospheric disturbance caused by the difference in velocity of the upward propagating waves generated by earthquake appears more than once. Our results indicate that the detection of ionospheric disturbances varies depending on the geometry of the GPS station, satellite, and epicenter or the detection method and that the apparent growth of amplitude in the time series varies depending on the focal depth or the site-satellite-epicenter geometry.

A case study of ground subsidence analysis using the InSAR technique (InSAR 기술을 이용한 지반침하분석 사례연구)

  • Moon, Joon-Shik;Oh, Hyoung-seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • InSAR (Interferometry SAR) technique is a technique that uses complex data to obtain phase difference information from two or more SAR image data, and enables high-resolution image extraction, surface change detection, elevation measurement, and glacial change observation. In many countries, research on the InSAR technique is being conducted in various fields of study such as volcanic activity detection, glacier observation in Antarctica, and ground subsidence analysis. In this study, a case of large ground settlement due to groundwater level drawdown during tunnelling was introduced, and ground settlement analyses using InSAR technique and numerical analysis method were compared. The maximum settlement and influence radius estimated by the InSAR technique and numerical method were found to be quite similar, which confirms the reliability of the InSAR technique. Through this case study, it was found that the InSAR technique reliable to use for estimating ground settlement and can be used as a key technology to identify the long-term ground settlement history in the absence of measurement data.

Analysis of the application of image quality assessment method for mobile tunnel scanning system (이동식 터널 스캐닝 시스템의 이미지 품질 평가 기법의 적용성 분석)

  • Chulhee Lee;Dongku Kim;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.365-384
    • /
    • 2024
  • The development of scanning technology is accelerating for safer and more efficient automated inspection than human-based inspection. Research on automatically detecting facility damage from images collected using computer vision technology is also increasing. The pixel size, quality, and quantity of an image can affect the performance of deep learning or image processing for automatic damage detection. This study is a basic to acquire high-quality raw image data and camera performance of a mobile tunnel scanning system for automatic detection of damage based on deep learning, and proposes a method to quantitatively evaluate image quality. A test chart was attached to a panel device capable of simulating a moving speed of 40 km/h, and an indoor test was performed using the international standard ISO 12233 method. Existing image quality evaluation methods were applied to evaluate the quality of images obtained in indoor experiments. It was determined that the shutter speed of the camera is closely related to the motion blur that occurs in the image. Modulation transfer function (MTF), one of the image quality evaluation method, can objectively evaluate image quality and was judged to be consistent with visual observation.

Detection of Limesilicate Cavities by 3-D Electrical Resistivity Survey (3차원 전기비저항탐사에 의한 석회규산염암의 공동탐지)

  • Park, Sam-Gyu;Kim, Chang-Ryol;Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Seong-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.597-605
    • /
    • 2006
  • In this study, we examined the applicability of 3-D electrical resistivity survey to detect underground cavities within ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun in Korea. Underground cavities are widely present within the limesilicate bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limesilicate cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity correspond to the zones of the cavities identified in the boreholes at the test site, and that the 3-D electrical resistivity survey is very effective to detect underground cavities.

True Triaxial Physical Model Experiment on Brittle Failure Grade and Failure Initiation Stress (취성파괴수준과 파괴개시시점에 관한 진삼축 모형실험연구)

  • Cheon, Dae-Sung;Park, Chan;Park, Chul-Whan;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.128-138
    • /
    • 2007
  • At low in-situ stress, the continuity and distribution of natural fractures in rock mass predominantly control the failure processes. However at high in-situ stress, the failure process are affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies on the stress- or excavation-induced damage of rock revealed its importance especially in a highly stressed regime. In order to evaluate the brittle failure around a deep underground opening, physical model experiments were carried out. For the experiments a new tue triaxial testing system was made. According to visual observation and acoustic emission detection, brittle failure grades were classified under three categories. The test results indicate that where higher horizontal stress, acting perpendicular $(S_{H2})$ and parallel $(S_{H1})$ to the axis of the tunnel respectively, were applied, the failure grade at a constant vertical stress level (Sy) was lowered. The failure initiation stress was also increased with the increasing $S_{H1}\;and\;S_{H2}$. From the multi-variable regression on failure initiation stress and true triaxial stress conditions, $f(S_v,\;S_{H1},\;S_{H2})$ was proposed.

Measurement of Joint Roughness in Large-Scale Rock Fracture Using LIDAR (LIDAR를 이용한 대규모 암반 절리면의 거칠기 측정)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.52-63
    • /
    • 2009
  • This is a study on large-scale rock joint roughness measurements using LIDAR (light detection and ranging) and the Split-FX point cloud processing software. The large-scale rock Joint Roughness Coefficient (JRC) is calculated using the maximum amplitude of joint asperities over the profile length on large-scale Joint surfaces of rock. As the profile length increases, JRC decreases due to scale-effects of rock specimens and is non-stationary. Also JRC shows anisotropy depending on the profile direction. The profile direction is measured relative to either dip or strike of the large-scale joint.

High Resolution Borehole Acoustic Scanner (Televiewer) (고분해능 텔레뷰어 검층기법의 기능)

  • ;Schepers,R
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.277-288
    • /
    • 1995
  • Fracture detection has always been very attractive to the log, because it is important in many of our prospecting activities, e.g. in understanding the underground rock formation and also the fluid flow as a high permeability path. This paper demonstrates the use of high resolution borehole acoustic scanner for the detection of fractures. The tool, known as Televiewer, is the first acoustic borehole imaging system to use a focussed beam. The acoustic beams generated by a single transducer are sent toward the borehole wall, scanning the wall in a tight helix as the tool moves along the borehole. The amplitudes and travel times of the reflected signals are then measured, which produces the corresponding images. The highly resolved amplitude image allows to recognize various size of fractures and in addition to derive the rock strength from the image. Meanwhile, the travel time image itself can be directly converted to a precise caliper image, providing detailed information of deviations of the borehole shape. It also allows correction of and explanations for amplitude variations. Field measurements were carried Out at the Cheongyang study sites in Korea to illustrate the efficiency of the televiewer log.

  • PDF

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Fundamental Experiment for the Development of Water Pipeline Locator (상수도관로 위치탐사 장비개발을 위한 기초실험)

  • Park, Sang-Bong;Kim, Jin-Won;Oh, Kyeong-Seok;Kim, Min-Cheol;Koo, Ja-yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.253-261
    • /
    • 2016
  • A variety of methods for detecting the location of an underground water pipeline are being used across the world; the current main methods used in South Korea, however, have the problems of low precision and efficiency and the limitations in actual application. On this, this study developed locator capable of detecting the location of a water pipe by the use of an IMU sensor, and technology for using the extended karman filter to correct error in location detection and to plot the location on the coordinate system. This study carried out a tract test and a road test as basic experiments to measure the performance of the developed technology and equipment. As a result of the straight line, circular and ellipse track tests, the 1750 IMU sensor showed the average error of 0.08-0.11%; and thus it was found that the developed locator can detect a location precisely. As a result of the 859.6-m road test, it was found that the error was 0.31 m in case the moving rate of the sensor was 0.3-0.6 m/s; and thus it was judged that the equipment developed by this study can be applied to long-distance water pipes of over 1 km sufficiently. It is planned to evaluate its field applicability in the future through an actual pipe network pilot test, and it is expected that locator capable of detecting the location of a water pipe more precisely will be developed through research for the enhancement of accuracy in the algorithm of location detection.