Measurement of Joint Roughness in Large-Scale Rock Fracture Using LIDAR

LIDAR를 이용한 대규모 암반 절리면의 거칠기 측정

  • Published : 2009.02.28

Abstract

This is a study on large-scale rock joint roughness measurements using LIDAR (light detection and ranging) and the Split-FX point cloud processing software. The large-scale rock Joint Roughness Coefficient (JRC) is calculated using the maximum amplitude of joint asperities over the profile length on large-scale Joint surfaces of rock. As the profile length increases, JRC decreases due to scale-effects of rock specimens and is non-stationary. Also JRC shows anisotropy depending on the profile direction. The profile direction is measured relative to either dip or strike of the large-scale joint.

대규모 암반 절리면의 거칠기를 구하는 여러 가지 방법이 있으나, 길이 10 cm의 절리를 Barton 등이 제안한 표준절리면곡선과 비교하여 절리면 거칠기계수 JRC (joint roughness coefficient)를 결정하고 대규모 절리의 길이에 따라 보정하는 것이 가장 일반적인데, 적합한 표준 절리면곡선을 선택할 때 측정자에 따라 달라자는 경우가 많다. 따라서 대규모 암반 절리면의 거칠기 JRC는 길이에 따른 보정 없이 직접 측정하는 것이 정확할 것이나 측정방법에 한계가 있다. 본 연구에서는 대규모 암반절리를 LIDAR (light detection and ranging)로 스캔하고 절리의 길이 L과 절리면 상의 돌출부(asperity) 높이의 진폭 a를 이용하여 대규모 암반 절리의 거칠기계수 JRC를 구하였다. 그 결과 대규모의 암반 절리면에서도 절리의 길이 증가에 따라 거칠기 계수 JRC가 감소하는 비 정상상태(non-stationary)의 치수효과와 거칠기 측정방향에 따라 절리면 거칠기계수 JRC가 다른 것을 확인하였다.

Keywords

References

  1. Goodman, R.E., 1989. Deformability of Rocks, Intraduction to Rock Mechanics. 2nd Edition. Wiley, New York, p.562
  2. Brady, B.H.C., Brown, E.T., 1994. Rock Mechanics for Underground Mining. Chapman & Hall, London, UK, p.571
  3. Nelson, R.A., 1985. Geological Analysis of Naturally Fractured Reservoirs. Buttenworth-Heinemann Publishers, Woburn, MA, p.336
  4. Bieniawski, Z.T., 1989. Engineering Rock Mass Classification, Wiley, New York, USA, p.251
  5. Priest, S.D., 1993. Discontinuity Analysis for Rock Engineering. Chapman & Hall, London, p.473
  6. N. Barton, 1973, Review of a new shear strength criterion for rock joints. Eng Geol 7, pp.287-332 https://doi.org/10.1016/0013-7952(73)90013-6
  7. ISRM, 1978, Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15 319-368 https://doi.org/10.1016/0148-9062(78)91472-9
  8. N.H. Maerz, J.A. Franklin and C.P. Bennett, 1990, Joint roughness measurement using shadow profilometry. Int J Roek Mech Min Sci Geomech Abstr 27, pp.329-343 https://doi.org/10.1016/0148-9062(90)92708-M
  9. Hsiung, S. M., Ghosh, A., Ahola, H. P., Chowdbury, A. H., 1993, Assessment of conventional methodologies for joint roughness coefficient determination. J. Rock Mech. Min. Sci. Geomech. Abstr, 30(7), 825-829 https://doi.org/10.1016/0148-9062(93)90030-H
  10. P.H.S.W. Kulatilake, G. Shou, T.H. Huang and R.M. Morgan, 1995, New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abstr 32, pp.673-697 https://doi.org/10.1016/0148-9062(95)00022-9
  11. A. J. Beer, D. Stead, J S. Coggan, 2002, Estimation of the joint roughness coefficient (JRC) by visual comparison. Mech Mechanics and Rock Engineering, 35(1), pp.5-74
  12. T.H. Wu and E.M. Ali, 1978, Statistical representation of joint roughness. Int J Rock Mech Min Sci Geomech Abstr 15, pp. 259-262 https://doi.org/10.1016/0148-9062(78)90958-0
  13. R. Tse and D.M. Cruden, 1979, Estimating joint roughness coefficients. lnt J Rock Mech Min Sci Geornech Abstr 16, pp. 303-307 https://doi.org/10.1016/0148-9062(79)90241-9
  14. J. Krahn and N.R. Morgenstern, 1979, The ultimate frictional resistance of rock discontinuities. Int J Rock Mech Min Sci Geomech Abstr 16, pp.127-133 https://doi.org/10.1016/0148-9062(79)91449-9
  15. P.M. Dight and H.K. Chiu, 1981, Prediction of shear behavior of joints using profiles. Int J Rock Mech Min Sci Geomech Abstr 18, pp.369-386 https://doi.org/10.1016/0148-9062(81)90002-4
  16. M.J. Reeves, 1990, Rock surface roughness and frictional strength. Int J Rock Mech Min Sci Geomech Abstr 27, pp.429-442 https://doi.org/10.1016/0148-9062(90)92715-Q
  17. J.R. Carr and J.B. Warriner, 1989, Relationship between the fractal dimension and joint roughness coefficient, Bull. Association of Engineering Geologists XXVI (2), pp.253-263
  18. Y. H. Lee, J.R. Carr, D.J. Barr and C.J. Hass, 1990, The fractal dimension as a measure of the roughness of rock discontinuity profiles, Int. J. Rock Mech., Min. Sci., & Geomech. Abstr. 27, pp. 453-464 https://doi.org/10.1016/0148-9062(90)90998-H
  19. N. Wakabayashi and I. Fukushige, 1992, Experimental study on the relation between fractal dimension and shear strength. Lake Tahoe, CA, Conf. Fractured and Jointed Rock Masses (June 3-5,) pp.119-124
  20. Mandelbrot BB, 1983, The fractal of nature. New York: W.H. Freeman
  21. N.E. Odling, 1994, Natural fracture profiles, fractal dimension and joint roughness coefficient. Rock Mech Rock Eng 27, pp. 135-153 https://doi.org/10.1007/BF01020307
  22. P.H.S.W. Kulatilake, J. Um, G. Pan, 1998, Requirement for accurate quantification on self-affine roughness using the variogram method. Int. J. Solids Structures. Vol. 35, Nos 31-32, pp.4167-4189 https://doi.org/10.1016/S0020-7683(97)00308-9
  23. T. Shirono, P.H. S.W. Kulatilake, 1997, Accuracy of the spectral method in estimating fractal/spectral parameters for self-affine roughness profiles. Int. J. Rock Mech. Sci. Vol. 34, No.5, pp.789-804 https://doi.org/10.1016/S1365-1609(96)00068-X
  24. William L. Power, Terry E. Tullis, 1991, Euclidean and fractal models for the description of rock surface roughness. Journal of Geophysical research. Vol. 96, No. B1. pp.415-424. Jan. 10 https://doi.org/10.1029/90JB02107
  25. Stephen R. Brown, Christopher H. Scholz, 1985, Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical research. Vol. 90, No. B14.pp.12,575-12,582. Dec. 10 https://doi.org/10.1029/JB090iB14p12575
  26. P.H. S.W. Kulatilake, J. Um., 1999, Requirements for accurate quantification of self-affine roughness using the roughness-length method. Int. J. Rock Mech. Min. Sci. 36, pp.5-18 https://doi.org/10.1016/S0148-9062(98)00170-3
  27. P.H. S.W., J. Um., G. Pan., 1997, Requirements for accurate quantification of self-affine roughness using the line scaling method. Rock Mech. Rock Engng. 30(4), pp.181-206 https://doi.org/10.1007/BF01045716
  28. S. Bandis, A.C. Lumsden and N.R. Barton, 1981, Experimental studies of scales effects on the shear behaviour of rock joints. Int J Rock Mech Min Sci Geomech Abstr 18, pp.1-21
  29. Nick Barton, 1981, Shear strength investigations for surface mining. The third International Conference on Stability in Surface Mining., Vancouver, Chp. 7, AIME, pp.171-192
  30. N. Barton, S. Bandis, 1990, Review of predictive capabilities of JRC-JCS model in engineering practice. Proc. Int. Conf. Rock joints. pp.603-610
  31. Q. Feng, N. Fardin, L. Jing, and O. Stephansson, 2003, A new method for in-situ non-contact roughness measurement of large rock fracture surfaces. Rock Mech. Rock Engng. 36(1), pp.3-25 https://doi.org/10.1007/s00603-002-0033-1
  32. Park, E.S., Cheon, D. S., Synn, J. H., Jung, Y. B. and Choi, Y. K. , 2008, Characterization of discontinuities using 3-D laser scanner. ARMA 08-187
  33. Mah, J., Samson, C., McKinnon, S., and Aikman, D., 2008, Triangulation-based 3D laser imaging for underground rock mass characterization: Impact of operational parameters. ARMA 08-249
  34. Jamie Pringle, Andy Gardiner, Robin Westerman, 2004, Virtual geological outcrops-fieldwork and analysis made less exhaustive? Geology Today. Vol .20. No.2 March -April pp.67-72 https://doi.org/10.1111/j.1365-2451.2004.00450.x
  35. John Kemeny, Randy Post, 2003, Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers & Geoscience 29, pp.65-77 https://doi.org/10.1016/S0098-3004(02)00106-1
  36. N.Fardin, Q. Feng, O. Stephansson, 2004, Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness. Int. J. Rock Mech. Min Sci. 41, pp.329-335
  37. Matt Lato, Mark S. Diederichs, D. Jean Hutchinson, Rob Harrp, 2008, Optimization of LiDar Scanning and processing for automated structural evaluation of discontinuities in rockmasses. Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2008.04.007
  38. B$\"{a}$cktr$\"{o}$m, A., Feng Q. and Lanaro F., 2008, Improvement of fracture mapping efficiency by means of 3D-laser scanning. ARMA 08-106
  39. Q.Feng, P.Sj$\"{o}$gren, O.Stephansson, L.Jing, 2001, Measuring fracture orientation at exposed rock faces by using a non-reflector total station. Engineering geology 59, pp. 133-146 https://doi.org/10.1016/S0013-7952(00)00070-3
  40. Virtual Geomatics. 2008. www.virtualgeomatics.com Pfeifer, N., Gorte, B., Oude Elberink, S., 2004, Influences of Vegetation on Laser Altimetry - Analysis and Correction Approaches. The International archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part 8/W2, pp.283 -287
  41. Virtual Geomatics. 2008. www.virtualgeomatics.com Pfeifer, N., Gorte, B., Oude Elberink, S., 2004, Influences of Vegetation on Laser Altimetry - Analysis and Correction Approaches. The International archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part 8/W2, pp.283 -287
  42. Vidar Kveldsvik, Bj$\"{o}$rn Nilsen, Herbert H. Einstein, Farrokh Nadim, 2008, Alternative approacs for analysis of a 100,000 $m^3$ rock slide based on Barton-Bandis shear strength criterion. Landslides, 5:pp.161-176 https://doi.org/10.1007/s10346-007-0096-x