• Title/Summary/Keyword: underbreak

Search Result 8, Processing Time 0.022 seconds

Effect of the Drilling & Blasting Conditions on the Range of Overbreak in Tunel Excavation (터널굴착시 천공 및 발파조건이 여굴의 크기에 미치는 영향)

  • Kim, Gyung-Hun;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.3-17
    • /
    • 2004
  • Overbreak, underbreak and range of disturbed rock zone (DRZ) are the most important factors in evaluating the results of tunnel blasting. These factors, which depend on the discontinuities in rock mass, the blasting patterns and drilling conditions, have been studied. The range of DRZ can be estimated by relationships between vibration velocity and associated tensile stress. A new computerized rocket jumbo drill has been adopted to reduce overbreak based on the analysis of drilling accuracy. In-situ blasting tests were also performed by varying initiating systems. Overbreak can be reduce from 34.5cm to 20cm. The range of DRZ is 0.2m with stoping holes and 0.4m with wall holes respectively. In addition, some methods to reduce DRZ have been presented in this study.

  • PDF

Effects of free surface using waterjet cutting for rock blasting excavation (워터젯 자유면을 이용한 암반발파 굴착공법의 효과)

  • Oh, Tae-Min;Cho, Gye-Chun;Ji, In-Taeg
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The conventional blasting method generates serious blasting vibration and underbreak/overbreak in spite of its high efficiency for rock excavation. To overcome these disadvantages, this paper introduces an alternative excavation method that combines the conventional blasting process with the free surface on the perimeter of the tunnel face using waterjet cutting technology. This proposed excavation method has advantages of (1) reducing vibration and noise level; (2) minimizing underbreak and overbreak; and (3) maximizing excavation efficiency. To verify the effects of the proposed excavation method, field tests were performed with a smooth blasting method at the same excavation conditions. Test results show that the vibration is reduced by up to 55% and little underbreak/overbreak is generated compared with the smooth blasting method. In addition, the excavation efficiency of the proposed method is greater than that of the smooth blasting method. The proposed blasting method with a free surface using waterjet cutting can be applied to urban excavation construction as well as to underground structure construction.

Development of Cross Section Management System in Tunnel using Terrestrial Laser Scanning Data (지상 레이저 스캐닝 자료를 이용한 터널단면관리시스템 개발)

  • Roh, Tae-Ho;Kim, Jin-Soo;Lee, Young-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.90-104
    • /
    • 2008
  • Laser scanning technology with high positional accuracy and high density will be widely applied to vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. This study taps into the strengths of a terrestrial laser scanning technique to develop a tunnel cross section management system that can be practically employed for determining the cross section of tunnels more promptly and accurately. Three dimensional data with high density were obtained in a prompt and accurate manner using a terrestrial laser scanner. Data processing was then conducted to promptly determine arbitrary cross sections at 0.1meter, 0.5meter and 1.0meter intervals. A laser scanning technique was also used to quickly and accurately calculate the overbreak and underbreak of both each cross section and the entire tunnel section. As the developed system utilizes vast amounts of data, it was possible to promptly determine the shape of arbitrary cross section and to calculate the overbreak and underbreak more accurately with higher area precision. It is expected, therefore, that the system will not only enable more efficient and cost effective tunnel drilling management and monitoring but also will provide a basis for future construction and management of tunnel cross section.

  • PDF

A Study on Overbreak Control Methods by Evaluating Drilling Conditions in Tunnel Blasting (터널발파시 천공상태 평가를 통한 여굴 저감방안 연구)

  • Kim, Yang-Kyun;Kim, In-Ho;Yoo, Joung-Hoon;Kim, Seong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.198-209
    • /
    • 2005
  • Overbreak or underbreak is one of the most important factors in evaluation the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and the method and condition of drilling, has been a target of challenge to many blasting engineers as it is connected with economic directly. Drilling is generally known as a primary one of overbreak producing factors. So, This study presented the practical solution to reduce overbreak, which was caused by drilling, through the analyses of how to make a drilling process accurate and how to evaluate the effect of each drilling method. Thus, this solution would give a quantitative analysis of overbreak and provide the information of how to reduce the quantity of overbreak. Moreover, for verifying this solution, we applied it to a tunnel project and then have found out that the quantity of overbreak decreased to approximately 10-40% compared with the previous way of overbreak control.

  • PDF

On the Mechanism of Smooth Blasting on the Rock Containing Discontinuties (불연속면이 존재하는 암반에서의 Smooth Blasting의 기구)

  • 박홍민;이상은
    • Explosives and Blasting
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 1996
  • Lately, the improtance of smooth blasting is increasing on every construction fields, suchas underground caves, tunnels, and roadconstruction, etc. The main purpose of smooth blasting is to prevent unnecessary cracks from the base rockwhich preserved permanently and is to gain the smooth fracture plane. So, in smooth blashing, explosives with low detonating velocity are generally used. But it is difficult to discuss general theory on the smooth blashing because the mechanical properties of pertienent rocks are difficult regionally. Accordingly basic reserches on the smooth blasting are demended. In this paper, the mechanisms of the smooth blasting on the rocks containing discontinuities were discussd. Firstly, the writer predicted the formation of fracture plane and unevenness using mathematical methodology, the next the model blast tests were conducted in order to simulate the crack propagation modes from the blast holes. Through the research, the following conclusions were obtained l)The blast test results were in reasonally good agreement with the theoretical prediction. 2)The degree of discontinuity has an influence on the fracture morphology.

  • PDF

A Study on the Drilling Methods to reduce Overbreak in Tunnel Blasting (터널발파 작업시 여굴 저감을 위한 천공방법 연구)

  • 김양균;김형철;유정훈
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • Overbreak or underbreak is one of the most important factors in evaluating the results of a tunnel blasting. Overbreak, which depends on the quality of rock, the type and quantity of explosives, and drilling conditions, has been a target of challenge to many blasting engineers because it directly affects construction cost. Drilling is generally known as one of the primary factors to generate overbreak. This study presents a real working model to reduce overbreak based on the analysis of drilling accuracy and overbreak generated from various working methods related to drilling. As the first step of the study, 45 experiments have been performed. The factors investigated are: marking contour line, the position of perimeter holes, the change of look-out with drilling rig position, and the proper space between perimeter holes. It is concluded that workers and engineers' will and efforts are the most important factors to reduce overbreak and that improving drilling method and pattern could reduce overbreak to a considerable amount.

Application of Scanning Total Station for Efficiency Enhancement of Tunnel Surveys (터널측량의 효율성 향상을 위한 스캐닝 토털스테이션의 활용)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.242-247
    • /
    • 2017
  • Over- and under-excavation are factors that increase construction cost of tunnels, which makes management essential. Total stations have been used for tunnel surveying because GNSS is difficult to use in tunnels. However, it takes much time to acquire data using total stations. In this study, a total station was integrated with a 3D laser scanner and used for tunnel surveying in Namyangju-si, Gyeonggi-do. The scanning total station reduced the work time compared to the conventional method. Furthermore, reports were effectively generated for overbreak and underbreak for each section and compared with the design. In addition, we could analyze both the cross section and scanned area effectively by using the scanning data. This method can improve the efficiency of tunnel surveying work by combining the advantages of a conventional total station and a 3D laser scanner.

A Study on Assessment of Advance and Overbreak in Underground Excavation Utilizing 3D Scanner (3D 스캐너를 이용한 지하공동의 굴진장 및 여굴 평가 기초연구)

  • Noh, You-Song;Kim, Jung-Kyu;Ko, Young-Hun;Kim, Seong-Jun;Chung, So-Keul;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Abstract This study is to efficiently calculate and evaluate the elements of advance, overbreak and underbreak on the mine under the production using the 3D laser scanner. For this purpose, a 3D laser scanner was sued to acquire the point-cloud which records the space coordinates and modelling of the underground tunnel using the 3D modeling program. When each element was observed through the study result, the advance on the center cut was 2.6m in average while the total advance was 2.4m. If the drilling length of 3.8m is based, the advance rate was evaluated to be 67% in average in the center cut section with the total average of 64%. In addition, when the volume of overbreak was measured based on the design cross section, the average overbreak volume was found to be $4.5m^3$ on left wall, $4.5m^3$ on right wall, and $5m^3$ on roof with the total volume of $14m^3$. When the overbreak volume is measured based on the look-out cross section, it was $3m^3$ on roof with the total volume of $8.4m^3$. The rate of overbreak volume against the average excavation volume was 8% based on the design cross section and 5% based on the look-out cross section.