• Title/Summary/Keyword: underactuated vessel

Search Result 4, Processing Time 0.019 seconds

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Virtual Goal Method for Homing Trajectory Planning of an Autonomous Underwater Vehicle (가상의 목표점을 이용한 무인 잠수정의 충돌회피 귀환 경로계획)

  • Park, Sung-Kook;Lee, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.61-70
    • /
    • 2009
  • An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.