• Title/Summary/Keyword: unconfined

Search Result 736, Processing Time 0.025 seconds

Strength Characteristics of Soil-Cement Constructed in Seoul Urban Area (서울 도심지 내 지반에 시공한 소일-시멘트의 강도 특성)

  • Choo, Jin-Hyun;Kim, Young-Seok;Kim, Hak-Seung;Cho, Yong-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1206-1211
    • /
    • 2010
  • Soil-cement, a hardened mixture of Portland cement, soil, and water that contain sufficient durability, has been widely utilised in Seoul urban construction sites to retain lateral earth pressures or reinforce grounds. However, little information has been reported about the strength characteristics of soil-cement constructed in Seoul urban area. In this study, we performed a number of unconfined test to the soil-cements mixed from soils sampled in 3 sites in Seoul urban area. Results indicate that unconfined strengths and optimum cement amounts of soil-cements are highly dependent on the proportion of coarse-grain particles of mixed soils. Furthermore, changes of unconfined strengths with curing time are diverse with respect to mixing conditions.

  • PDF

Effect of Water Content Change of Soft Clay on Strength of Solidification Agent Treated Soil (연약점토의 함수비 변화가 고화처리토의 강도에 미치는 영향)

  • 김광빈;이용안;이광준;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.553-560
    • /
    • 2002
  • The improvement effect of soft ground is estimated by unconfined strength mainly. The unconfined strength of solidification agent treated soil is likely to vary with ununiformed mixing ratio and water content change of in-situ ground place by place. So, it is unreasonable to apply a solidification agent mixing ratio obtained from laboratory test results on all over the soft ground. In this study, it was analysed how the unconfined strength would be effected by the water content of soft ground. For this study, a series of unconfined compressive tests are peformed on various water content soil samples. The test results showed that the strength was fallen to 30∼80% by two times increase of water content approximately, This means that strength of solidification agent treated soil is influenced greatly by water content of raw soft ground and mixing ratio of solidification agent. It was suggested that the method how to decide the mixing ratio with soft ground water content.

  • PDF

Engineering Characteristics of Filling Materials using Lightweight Foamed Concrete (경량콘크리트를 사용한 충전용 재료의 공학적 특성)

  • Do, Jong-Nam;Kang, Hyung-Nam;Seo, Doo-Won;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.519-523
    • /
    • 2009
  • In this study, the base mixing ratio was determinated to estimate the optimal mixing ratio of material with a change of mixing ratio of micro cement, sand, foaming agent, plasticizer by testing the unconfined compressive strength test. The unconfined compressive strength test was performed to grasp a engineering characteristics of with a change of micro cement, bubble. The results of test, the unconfined compressive strength increased with a micro cement's increase and bubble's decrease. In the future, it will be secured that is reliable datas from laboratory of various condition and in-situ tests to develop optimal lightweight foamed concrete.

  • PDF

Effect of microorganism on engineering properties of cohesive soils

  • Yasodian, Sheela Evangeline;Dutta, Rakesh Kumar;Mathew, Lea;Anima, T.M.;Seena, S.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.135-150
    • /
    • 2012
  • This paper presents the study of the effect of microorganism Bacillus pasteurii on the properties such as Atterbergs' limit and unconfined compressive strength of cohesive soils. The results of this study reveal that the liquid limit and plasticity index for all clay soils decreased and the unconfined compressive strength increased. Decrease in plasticity index is very high for Kuttanad clay followed by bentonite and laterite. The unconfined compressive strength increased for all the soils. The increase was high for Kuttanad soil and low for laterite soil. After 24 h of treatment the improvement in the soil properties is comparatively less. Besides the specific bacteria selected Bacillus pasteurii, other microorganisms may also be taking part in calcite precipitation thereby causing soil cementation. But the naturally present microorganisms alone cannot work on the calcite precipitation.

Geotechnical Characteristics Analysis of Oil Contaminated Clayey Soil (유류로 오염된 점성토의 지반공학적 특성 분석)

  • Kwon, Moo-Nam;Kim, Hyun-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • This test was performed to evaluate the change of the unconfined compressive strength, strength parame¡?ters which resulted from direct shear test and oil residue percents analyzed by GC-MS as time lapse, oil addition. Unconfined compression strength of $10\%$ kerosene added by weight of dry soil recovered as time passed. In the case of $5\%$ kerosene added, the strength recovered as much as clean clayey soil after about 50 days passing. For the case of diesel added, the recovery of unconfined compressive strength was not shown even though about 60 days passed. The strength parameters (c, $\psi$) of kerosene added not changed but for diesel added, the cohesion was very decreased as diesel addition increased. Residual percent of kerosene in the soil was less than that of diesel as time passed.

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data (터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가)

  • Park, Young Hwa;Moon, Hong Duk;Ha, Man Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

A Study on The Unconfined Compression Test Method of Cohesive Soil (점성토(粘性土)의 일축압축강도(一軸壓縮强度) 시험방법(試驗方法)에 대(對)한 고찰(考察))

  • Kang, Yea Mook;Lee, Sei Jin;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 1990
  • In order to investigate the influence of unconfined compression strength on undisturbed cohesive soil, the unconfined compression test were carried out on the basis of various size of specimen and compression rate. The result of these experiments were summarized as follows. 1. As the section area of specimen increased. the unconfined compression strength was decreased. 2. As the ratio of height and diameter of specimen increased, the unconfined compression strength was decreased. 3. The unconfined compression strength was increased by 3%, but in values over the 3% was decrease. 4. As the compression rate increased. the modulus of deformation was increased.

  • PDF

Prediction of unconfined compressive and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes using multiple linear regression and artificial neural network

  • Chore, H.S.;Magar, R.B.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.225-240
    • /
    • 2017
  • This paper presents the application of multiple linear regression (MLR) and artificial neural network (ANN) techniques for developing the models to predict the unconfined compressive strength (UCS) and Brazilian tensile strength (BTS) of the fiber reinforced cement stabilized fly ash mixes. UCS and BTS is a highly nonlinear function of its constituents, thereby, making its modeling and prediction a difficult task. To establish relationship between the independent and dependent variables, a computational technique like ANN is employed which provides an efficient and easy approach to model the complex and nonlinear relationship. The data generated in the laboratory through systematic experimental programme for evaluating UCS and BTS of fiber reinforced cement fly ash mixes with respect to 7, 14 and 28 days' curing is used for development of the MLR and ANN model. The data used in the models is arranged in the format of four input parameters that cover the contents of cement and fibers along with maximum dry density (MDD) and optimum moisture contents (OMC), respectively and one dependent variable as unconfined compressive as well as Brazilian tensile strength. ANN models are trained and tested for various combinations of input and output data sets. Performance of networks is checked with the statistical error criteria of correlation coefficient (R), mean square error (MSE) and mean absolute error (MAE). It is observed that the ANN model predicts both, the unconfined compressive and Brazilian tensile, strength quite well in the form of R, RMSE and MAE. This study shows that as an alternative to classical modeling techniques, ANN approach can be used accurately for predicting the unconfined compressive strength and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes.

Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands (고결모래의 일축압축강도와 전단파속도의 상관관계)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • Cemented soils have been widely used in road and dam construction, and recently ground improvement of soft soils. The strength of such cemented soils can be tested by using cored sample or laboratory-prepared specimen through unconfined compression or triaxial tests. It takes time to core a sample or prepare a testing specimen in the laboratory. In a certain situation, it is necessary to determine the in-situ strength of cemented soils very quickly and on time. In this study, the relation between unconfined compressive strength and shear wave velocity was investigated for predicting the in-situ strength of cemented soils. A small cemented specimen with 5 cm in diameter and 10 cm in height was prepared by Nakdong river sand and ordinary Portland cement. Its cement ratios were 4, 8, 12, and 16% and air cured for 7, 14, and 28 days. For recycling of resources, a blast furnace slag was also used with sodium hydroxide as an alkaline activator. The shear wave velocity for cemented soils was measured and then unconfined compressive strength test was carried out. As a cement ratio increased, the shear wave velocity and unconfined compressive strength increased due to increased density and denser structure. The relation between unconfined compressive strength and shear wave velocity increased nonlinearly for cemented soils with less than 16% of cement ratio.