• Title/Summary/Keyword: uncertainty navigation

Search Result 131, Processing Time 0.029 seconds

Effects of Mobile Navigation Program in Colorectal Cancer Patients based on Uncertainty Theory (대장암 환자를 위한 불확실성 이론 기반 모바일 내비게이션 프로그램의 효과)

  • Kim, Kyengjin;Park, Wanju
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.3
    • /
    • pp.274-285
    • /
    • 2019
  • Purpose: This study aimed to examine the effects of a mobile navigation program on uncertainty, resilience, and growth through uncertainty in colorectal cancer patients. Methods: To verify the effectiveness of the mobile navigation program, 61 participants diagnosed with colorectal cancer undergoing surgery were selected. A nonequivalent control group nonsynchronized design was used to evaluate the program. Uncertainty was measured using the Korean version of the Uncertainty in Illness Scale, resilience was measured using the Korean version of the Connor-Davidson Resilience Scale, and growth through uncertainty was measured using the Growth through Uncertainty Scale. Results: Compared with the control group, patients in the mobile navigation program group showed significant differences in scores for uncertainty (F=7.22, p=.009) and resilience (F=4.31, p=.042), but not for growth through uncertainty (F=2.76, p=.102). Conclusion: These results suggest that the mobile navigation program has positive effects on decreasing uncertainty and increasing resilience among colorectal cancer patients. The mobile navigation program could play a significant role in assisting colorectal cancer patients in regard to the continuity and usability of the program.

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.

Optimal Configuration of Redundant Inertial Sensors with Uncertainty (불확실성을 고려한 중복 관성센서의 최적 배치)

  • Shim Duk-Sun;Yang Cheol-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • In this paper we consider an optimal configuration problem for redundant inertial sensors which have uncertainty such as misalignment, scale factor error. The optimal configuration problem is treated from the viewpoint of navigation accuracy. We propose a necessary and sufficient condition for the optimal configuration of redundant sensors with no uncertainty, and a sufficient condition for the optimal configuration of redundant sensors with uncertainty. Finally we propose a condition for the optimal configuration based both navigation performance and FDI(fault detection and isolation).

Transfer Alignment Algorithm using Robust filter (강인필터를 이용한 전달정렬 알고리즘)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.26-26
    • /
    • 2000
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using robust H$_2$ filter. We suggest an uncertainty model for INS and apply the suggested discrete robust H$_2$ filter to the uncertainty model compared with kalman filter, the discrete robust H$_2$ filter is shown by simulation to have good performance of alignment time and accuracy.

  • PDF

Grid Map Building and Sample-based Data Association for Mobile Robot Equipped with Low-Cost IR Sensors (저가 적외선센서를 장착한 이동로봇에 적용 가능한 격자지도 작성 및 샘플기반 정보교합)

  • Kwon, Tae-Bum;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.169-176
    • /
    • 2009
  • Low-cost sensors have been widely used for mobile robot navigation in recent years. However, navigation performance based on low-cost sensors is not good enough to be practically used. Among many navigation techniques, building of an accurate map is a fundamental task for service robots, and mapping with low-cost IR sensors was investigated in this research. The robot's orientation uncertainty was considered for mapping by modifying the Bayesian update formula. Then, the data association scheme was investigated to improve the quality of a built map when the robot's pose uncertainty was large. Six low-cost IR sensors mounted on the robot could not give rich data enough to align the range data by the scan matching method, so a new sample-based method was proposed for data association. The real experiments indicated that the mapping method proposed in this research was able to generate a useful map for navigation.

  • PDF

A Stochastic Model for Optimizing Offshore Oil Production Under Uncertainty (불확실성하의 해양석유생산 최적화를 위한 추계적 모형)

  • Ku, Ji-Hye;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.462-468
    • /
    • 2019
  • Offshore oil production faces several difficulties caused by oil price decline and unexpected changes in the global petroleum logistics. This paper suggests a stochastic model for optimizing the offshore oil production under uncertainty. The proposed model incorporates robust optimization and restricted recourse framework, and uses the lower partial mean as the measure of variability of the recourse profit. Some computational experiments and results based on the proposed model using scenario-based data on the crude oil price and demand under uncertainty are examined and presented. This study would be meaningful in decision-making for the offshore oil production problem considering risks under uncertainty.

Stability Conditions for Positive Time-Varying Discrete Interval System with Unstructured Uncertainty (비구조화 불확실성을 갖는 양의 시변 이산 구간 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, we consider the new stability condition for the positive time-varying linear discrete interval systems with time-varying delay and unstructured uncertainty. The delay time is considered as time-varying within certain interval having minimum and maximum values and the system is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. The proposed stability condition is an improvement of the previous results which can be applied only to time-invariant systems or had no consideration of uncertainty, and they can be expressed in the form of a very simple inequality. The stability conditions are derived using the Lyapunov stability theory and have many advantages over previous results using the upper solution bound of the Lyapunov equation. Through numerical example, the proposed stability conditions are proven to be effective and can include the existing results.

Stability Condition of Discrete System with Time-varying Delay and Unstructured Uncertainty (비구조화된 불확실성과 시변 지연을 갖는 이산 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.630-635
    • /
    • 2018
  • In this paper, we consider the stability condition for the linear discrete systems with time-varying delay and unstructured uncertainty. The considered system has time invariant system matrices for non-delayed and delayed state variables, but its delay time is time-varying within certain interval and it is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. In the many previous literatures, the time-varying delay and unstructured uncertainty can not be dealt in simultaneously but separately. In the paper, new stability conditions are derived for the case to which two factors are subjected together and compared with the existing results considering only one factor. The new stability conditions improving many previous results are proposed as very effective inequality equations without complex numerical algorithms such as LMI(Linear Matrix Inequality) or Lyapunov equation. By numerical examples, it is shown that the proposed conditions are able to include the many existing results and have better performances in the aspects of expandability and effectiveness.

Performance Improvement of Low-cost DR/GPS for Land Navigation using Sigma Point Based RHKF Filter

  • Cho, Seong-Yun;Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1450-1455
    • /
    • 2005
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure land DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

  • PDF

Uncertainty reaction force model of ship stern bearing based on random theory and improved transition matrix method

  • Zhang, Sheng dong;Liu, Zheng lin
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.