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1. INTRODUCTION 
 

Commercial navigation technology has been become the 
core technology in LBS (Location Based) industry. The LBS 
system has been implemented for a car and the navigation 
system in LBS system is called CNS (Car Navigation System). 
CNS is comprised of a GPS receiver and a digital map, 
generally. And CNS is expanded into DR (Dead 
Reckoning)/GPS hybrid system to calculate the position 
information even in the urban area seamlessly. DR system for 
CNS must be implemented as low-cost to extend a commercial 
navigation market. Therefore, the DR system may include 
low-cost sensors instead of an IMU(Inertial Measurement 
Unit: 6DOP). In this paper, it is assumed that the DR system is 
implemented using an accelerometer and a gyro [1,2]. 

In order to calculate a 2D position in DR system, an 
odometer or a biaxial accelerometer has been utilized. In 
general, the DR system for a before market uses an odometer. 
And the DR system for an after market utilizes a biaxial 
accelerometer. In this paper, it is verified that the performance 
of the DR system using an accelerometer is better than that of 
the DR system using a biaxial accelerometer for land 
navigation. 

Currently, the DR/GPS hybrid navigation system has been 
developed using the extended Kalman filter (EKF). The EKF 
is the well-known approach in the integration of the nonlinear 
systems. However, the several flaws of the EKF exist, which 
may lead to sub-optimal performance and sometimes 
divergence of the filter. In recent years, various-type filters 
have been investigated to overcome the flaws. The sigma 
point kalman filter (SPKF) and the receding horizon Kalman 
FIR (RHKF) filter are the representative alternative filters 
[3,4]. 

If initial estimation error is large in the EKF, this filter may 
diverge because the Jacobian matrix for implementing the 
EKF has serious problems. The SPKF, however, does not need 
to calculate the Jacobian matrix. Therefore, the SPKF is robust 
to the initial estimation error, unlike the EKF. When system 
has an unmodeled error or temporary unknown bias, the EKF 
is under the full influence of the errors. In order to reduce the 
effect of these kinds of errors, the RHKF filter has been 
researched. Since the FIR filter utilized finite measurements 
over the most recent time interval, this filter is known to be 

robust against the temporary modeling uncertainties that may 
cause a divergence phenomenon in the case of the IIR 
structure filter [5]. However, the SPKF does not have the 
merits of the RHKF filter and the RHKF filter also does not 
have the advantages of the SPKF. In this paper, a novel filter, 
called the SPRHKF (Sigma Point based Receding Horizon 
Kalman FIR) filter, is presented. The SPRHKF filter is made 
by fusing the advantages of the two filters. 

In this paper, the performance of the EKF, the SPKF, and 
the SPRHKF filter is analyzed in the various situations of the 
DR/GPS hybrid navigation system. The results show that the 
SPKF and the SPRHKF filter work well even in the case of 
the initial large azimuth error. Moreover, the performance of 
the SPRHKF filter is better than the other filters in the cases 
that the inertial sensors have unmodeled random walk errors 
or have temporary unknown bias. The result is verified by 
some simulations 

 
2. DR CONSTRUCTION FOR CNS 

 
The differential equation for velocity calculation of INS is 

as follows: 
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In the case of 2D positioning for CNS, the gravity term is 

removed. And the coriolis force term can be ignored when low 
grade accelerometer is utilized in the CNS. Therefore, the 
simplified equation for discrete-time systems is as follows: 
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The DR_M1 must use a biaxial accelerometer. Another 
construction using just an accelerometer is as follows: 
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DR_M1 updates the velocity on the navigation frame by 
transforming the acceleration on the body frame into that on 
the navigation frame. If the vehicle turns with constant angular 
velocity (ω ) and constant velocity (V ), the accelerometers 
attached on the vehicle output [ ]Tb Vf ω0= . The y-axis 
(lateral axis) term means the centrifugal force. However, in the 
case that either the velocity or the angular velocity is low, the 
centrifugal force may not be recognized in the MEMS gyros. 

DR_M2 updates the velocity on the body frame using the 
x-axis accelerometer. Unless a vehicle slips, the vehicle moves 
only to the direction of the x-axis (longitudinal axis). And the 
output of the x-axis accelerometer does not contain the 
centrifugal force on the curve trajectory because the x-axis 
vector is parallel to the tangential vector of the curve. 

The velocity error in DR_M1 is caused by the biaxial 
accelerometer error and the gyro error. On the other hand, the 
DR_M2 has the velocity error caused by an accelerometer 
error and the gyro error. Moreover, the DR_M2 does not have 
the undetectable error that can be occurred on the curve 
trajectory in the DR_M1. Therefore, it is expected that the 
DR_M2 has less error than the DR_M1 as figure 1. 

The performance difference between the two methods is 
also appeared in the DR/GPS integration. In order to analyze 
the performance of the two methods, the DR/GPS integration 
is simulated using EKF. Figure 2 shows the gyro bias 
covariance. The gyro bias of the DR_M2/GPS is observable 
irrespective of the trajectory. However, the observability of 
the DR_M1/GPS varies according to the moving trajectory. 
Therefore, the estimation performance of the DR_M2/GPS is 
better than that of the DR_M1/GPS. 
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Fig. 1. Comparison between DR M1 and DR M2. 
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Fig. 2. Gyro bias covariance. 
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(a) o450 =δψ , sec]25~15[/20 so& =ψ  
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Fig. 3. Comparison between DR_M1 and DR_M2. 
 

Figure 3 shows the azimuth error according to the initial 
azimuth estimation error. It can be seen that the azimuth error 
in the DR_M2/GPS converges into 0 even in the case that the 
initial azimuth estimation error is large. However, the 
convergence of the azimuth error in the DR_M1/GPS is 
dependent on the moving trajectory and the initial estimation 
error size. Therefore, it is confirmed that the DR_M2/GPS has 
better performance than the DR_M1/GPS. 
 

3. SIGMA POINT BASED RHKF FILTER 
 

The EKF has various drawbacks in the estimation problem. 
One of the main drawbacks is that the state distribution is 
approximated by a Gaussian random variable, which is then 
propagated through the first-order linearization of the 
nonlinear system. When the initial estimation error is large, 
the propagated mean and covariance may have large errors, 
which may lead to sub-optimal performance and sometimes 
divergence of the filter. Another weak point is that EKF may 
have large error when there is model uncertainty, unknown 
time varying bias, etc. because of IIR structure. In this chapter 
the alternative filters are introduced. 

 
3.1 Sigma point Kalman filter  

The main idea of the SPKF: with a fixed number of 
parameters it should be easier to approximate a Gaussian 
distribution than it is to approximate an arbitrary nonlinear 
function [3]. The fixed number in the SPKF is the minimal set 
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of weighted sample points chosen deterministically, called 
sigma points. Generally, the number of sigma points is 

12 +L  (state dimension L ). The SPKF is constructed as 
follows [4]: 

 
0) A discrete time nonlinear system 

( ) ),0(~,1 QNwGwxfx kkkk +=+        (6a) 
( ) ),0(~, RNvvxhy kkkk +=          (6b) 

1-1) Initialization: augmented states and covariance 
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1-2) Initialization: weights 
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where ( )L12 −= αλ  is a scaling parameter. α  means the 
spread of the sigma points around 0x̂  (set to 311 −≤≤ eα ) 
and β  is used to incorporate prior knowledge of the 
distribution of x  (2 for Gaussian distribution). 
 

2) Sigma points Calculation 
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4) Measurement update 
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The equations (7)~(9) are preprocessed before processing 

the main SPKF. Then the SPKF is processed using the 
equations (10)~(19), recursively. 

It is well-known fact that the SPKF can overcome the flaws 
of the EKF such as inaccurate Jacobian matrices caused by the 
linear approximations of nonlinear functions with large initial 
estimation error. Therefore, it can be expected that the SPKF 
can drive the DR/GPS hybrid navigation system no mater 
what the estimated initial heading error is large. 

 
3.2 Receding horizon Kalman FIR filter  

If a filter has a model uncertainty or an unknown temporary 
time-varying bias, the estimation performance depends on the 
filter property. Unfortunately, the EKF cannot estimate the 
state variables exactly because the EKF has an IIR structure. 

 
Fig. 4. The concept of the RHKF filter. 

 
In order to enhance the filter performance in the system that 

has a model uncertainty or a time-varying bias, this paper 
introduces the RHKF filter. 

Figure 4 shows the concept of the RHKF filter. As can be 
seen in this figure, the current state, kx , is estimated only 
using the current measurements on the horizon [ ]kNk ,−  
( N  is a horizon size). The RHKF filter has a fast estimation 
property and is influenced restrictively by the errors such as 
model uncertainty, temporary time-varying bias, etc. due to 
the FIR construction. And it can be also utilized irrespective of 
singularity problems caused by unknown information about 
the horizon initial state in the linear systems. 

However, the research on the RHKF filter for nonlinear 
systems is insufficient by this time. The linear filters for 
nonlinear systems need the linearization of the nonlinear 
functions, which problem has decelerated the studies of the 
RHKF filter for nonlinear systems [5]. In order to apply the 
merits of the RHKF filter into the DR/GPS hybrid navigation 
system, this paper utilizes the concept of the sigma point. And 
an advanced RHKF filter for nonlinear systems is presented in 
the next chapter. 

 
3.3 Sigma point based RHKF filter  

The RHKF filter is designed using the inverse covariance 
form of the Kalman filter because it is assumed that the initial 
information of the states is unknown in the linear system. So, 
the initial value of the inverse covariance matrix is set by 0. 
However, the initial information must be obtained with small 
error in the nonlinear system because of the linear 
approximations of nonlinear functions. So, the RHKF filter 
has a restriction in the linearization process. In this paper, the 
SPRHKF filter is designed to weaken the restriction of the 
RHKF filter. As mentioned previously, the SPKF works well 
even in case of large initial estimation errors. The SPRHKF 
filter merges the merits of the RHKF filter and the SPKF to 
guarantee the robustness in the state estimation. 

The concept of the SPRHKF filter is shown in figure 5. In 
this figure, Nk  means the receding interval. The SPKF 
driven from time kt  provides the estimated solution in the 
interval [ ]

NN kkkk tt 2, ++ . Simultaneously, the SPKF for the 

posterior horizon is processed from time 
Nkkt + . And the 

estimated solution is provided by the SKPF for the posterior 
horizon in the interval [ ]

NN kkkk tt 32 , ++ . 
The SPRHKF filter has three advantages over the EKF, the 

RHKF filter, and the SPKF. First, the SPRHKF filter has a 
robust estimation property by the FIR characteristics of the 
RHKF filter. Secondly, the SPRHKF filter also has robustness 
to the horizon initial condition due to the strong point of the 
SPKF. Finally, the SPRHKF filter solved the heavy 
computational burden of the RHKF filter by extending the 
receding interval from 1 to Nk . 

 

Nkt − 1+−Nkt 2+−Nkt kt 1+kt 2+kt

L L

kx̂ 1ˆ +kx 2ˆ +kx
Nkt − 1+−Nkt 2+−Nkt kt 1+kt 2+kt

L L
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Fig. 5. The concept of the SPRHKF filter. 

 
4. DR/GPS USING THE SPRHKF FILTER 

 
In this chapter, the loosely coupled DR/GPS hybrid 

navigation system is designed using the SPRHKF filter. 
Figure 6 shows the block diagram of the DR/GPS hybrid 
navigation system using the SPRKKF filter. 

It is assumed that the DR system is constructed by an 
accelerometer and a gyro. The accelerometer measures the 
forward acceleration of the vehicle and the gyro measures the 
z-axis (vertical axis) angular velocity. 

The states to be estimated are set by 2D position on the 
navigation frame, velocity on the body frame, azimuth, 
accelerometer bias(∇ ), and gyro bias( ε ). 

First, the sigma points are generated using (10). Then the 
time propagation is processed as follows: 
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where 12,,2,1 += Lj L . b
xf  denotes the accelerometer 

output and zω  means the gyro output. 
In the EKF, the relations between states are denoted clearly 

in the Jacobian matrix. In the RHSPKF filter, the relations are 
shown in the time propagation of the sigma points as 
equations (20). 

After time propagation, the measurement update is carried 
out by equations (15)~(19). 

As can be seen in this chapter, the SPRHKF filter does not 
have any complex Jacobian matrixes. Moreover, this filter 
does not have complex equations required in the RHKF filter. 
Therefore, the proposed filter can be easily utilized to 
implement the DR/GPS hybrid navigation system. 

 

 
Fig. 6. The block diagram of the DR/GPS. 

5. SIMULATION AND RESULT 
 

In order to verify the performance of the proposed filter, 
some simulations are carried. The five situations are made and 
the EKF, the SPKF, and the SPRHKF filter are driven in these 
situations. Then the performance of these filters is analyzed. In 
the SPRHKF filter, the size of the receding horizon is set by 
15sec. The simulation results are summarized in table 1. 
 
5.1 Situation I  

Usually, the biases of low-cost inertial sensors show 
non-zero mean and non-stationary behavior, the errors are 
modeled as random walk. 

),0(~,,1 ∇∇∇− +∇=∇ QNww kkk         (21a) 
),0(~,,1 εεεεε QNww kkk += −          (21b) 

where the process noise must be set by ∇Q  and εQ . 
If the filters consider the sensor errors as random walk, the 

performance of the filters is similar to one another as can be 
seen in table 1. 

 
5.2 Situation II  

In general, the errors of inertial sensors can be modeled as 
random constant. However, the errors of low-cost inertial 
sensors may have random walk process. In this situation, the 
sensor errors are modeled as random walk. But the filters are 
considered the sensor errors as random constant. 
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(a) Position error 
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(b) Azimuth error 
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(c) Sensor error estimation error 
Fig. 7. Results of the situation II. 

 
As can be seen in figure 7, the estimation errors of the EKF 

and the SPKF diverge gradually. First, the sensor error 
estimation error increases with time. Second, the azimuth error 
is expanded under the influence of the gyro error estimation 
error. Finally, the position data diverges. On the other hand, 
the SPRHKF filter has bounded errors. Therefore, the 
SPRHKF filter is robust against the model uncertainty. 

 
5.3 Situation III  

In this situation, the sensor error is modeled as random 
walk and the filters consider the sensor error as random walk. 
And a temporary unknown accelerometer bias is occurred in 
the interval [ ]60,30  with size of ]/[1 2sm . As can be seen 
in table 1, the results of the three filters are similar to one 
another. This phenomenon is caused by that the temporary 
unknown bias is treated as a random walk bias. 

 
5.4 Situation IV  

In this situation, the sensor error is modeled as random 
constant and the filters consider the sensor error as random 
constant. And the temporary accelerometer unknown bias is 
occurred as equation (22). The result is shown in figure 8. It 
can be seen that the errors of the SPRHKF filter are less than 
that of the EKF and the SPKF. The reason is that the SPRHKF 
filter can estimate the sensor error as the situation II and the 
filter is influenced restrictively by the unknown bias due to the 
FIR construction.  
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(a) Position error 
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(b) Azimuth error 
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(c) Sensor error estimation error 

Fig. 8. Results of the situation IV. 
 
On the other hand, the EKF and the SPKF can not estimate 

the temporary unknown sensor error because of the IIR 
construction. It can be guessed that the temporary unknown 
sensor error can be estimated accurately if the sensor error is 
modeled as random walk in the filters. 

 
5.5 Situation V  

The initial azimuth information cannot be obtained unless a 
magnetic compass or a high-grade gyro module is utilized. 
Therefore, the initial azimuth error exists unavoidably. In this 
situation, the initial azimuth error is set by 160degrees. Figure 
9 shows the simulation results. As can be seen in figure 9, the 
EKF errors diverge with time. However, the SPKF and the 
SPRHKF filter have good performance. This phenomenon is 
owing to the Jacobian matrix error. The SPKF and the 
SPRHKF filter need not to calculate the Jacobian matrix. 
Therefore, the proposed filter is robust to the initial large 
estimation error, also. 
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(a) Position error 
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(b) Azimuth error 
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(c) Sensor error estimation error 
Fig. 9. Results of the situation V. 

 
6. CONCLUSION 

 
The SPRHKF filter for DR/GPS hybrid navigation system 

is developed and simulated in the various situations. The 
proposed filter has a robust estimation property by the FIR 
strategy. This filter also has robustness to the initial large 
estimation error due to the merit of the SPKF. And the flaw of 
the RHKF filter, heavy computational burden, is overcome in 
this filter. It can be expected that the RHSPKF filter can be 
utilized in DR/GPS hybrid navigation system with robust 
properties. 
 

Table 1. Results of the situations. 
(Mean value of the estimation error) 

 Position 
[m] 

Azimuth 
[deg] 

Acc Error 
[m/s2] 

Gyro Error
[deg/sec] 

(1) 1.1182 0.3141 -0.0324 -0.0934 
(2) 1.2885 0.2304 -0.0373 -0.0949 I 
(3) 1.3704 0.4455 0.0128 -0.1059 
(1) 6.9248 1.6791 -0.0959 -0.1538 
(2) 7.1681 1.6970 -0.0895 -0.1528 II
(3) 1.3201 0.3820 0.0330 -0.0928 
(1) 2.5022 0.1633 -0.0354 -0.0888 
(2) 2.7712 0.1723 -0.0373 -0.0802 III
(3) 2.6391 0.1707 0.0097 -0.0749 
(1) 50.6778 -5.7703 0.0638 0.1037 
(2) 49.2438 -4.1851 0.1409 0.0694 IV
(3) 4.9754 -0.4085 0.0482 -0.0079 
(1) 0.1005e3 -4.5025e3 -0.0012e3 0.0838e3 
(2) 4.3238 -8.3788 -0.0596 -1.4181 V
(3) 4.9269 -2.4147 -0.0053 -1.5011 

(1) EKF (2) SPKF (3) SPRHKF filter 
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