• 제목/요약/키워드: uncertain dynamic system

Search Result 154, Processing Time 0.023 seconds

Design of Robust Adaptive Fuzzy Controller for Uncertain Nonlinear System Using Estimation of Bounding Constans and Dynamic Fuzzy Rule Insertion (유계상수 추정과 동적인 퍼지 규칙 삽입을 이용한 비선형 계통에 대한 강인한 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. In indirect adaptive fuzzy control, based on the proved approximation capability of fuzzy systems, they are used to capture the unknown nonlinearities of the plant. Until now, most of the papers in the field of controller design for nonlinear system considers the affine system using fuzzy systems which have fixed grid-rule structure. We proposes a dynamic fuzzy rule insertion scheme where fuzzy rule-base grows as time goes on. With this method, the dynamic order of the controller reduces dramatically and an appropriate number of fuzzy rules are found on-line. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed-loop system is guaranteed.

  • PDF

Robust Control of a Haptic Interface Using LQG/LTR (LQG/LTR을 이용한 Haptic Interface의 강인제어)

  • Lee, Sang-Cheol;Park, Heon;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.757-763
    • /
    • 2002
  • A newly designed haptic interface enables an operator to control a remote robot precisely. It transmits position information to the remote robot and feeds back the interaction force from it. A control algorithm of haptic interface has been studied to improve the robustness and stability to uncertain dynamic environments with a proposed contact dynamic model that incorporates human hand dynamics. A simplified hybrid parallel robot dynamic model fur a 6 DOF haptic device was proposed to from a real time control system, which does not include nonlinear components. LQC/LTR scheme was adopted in this paper for the compensation of un-modeled dynamics. The recovery of the farce from the remote robot at the haptic interface was demonstrated through the experiments.

DISTURBANCE ATTENUATION FOR A CLASS OF DISCRETE-TIME SWITCHED SYSTEMS WITH EXPONENTIAL UNCERTAINTY

  • Li, Changlin;Long, Fei;Ren, Guohui
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.775-795
    • /
    • 2011
  • The disturbance attenuation problem for a class of discretetime switched linear systems with exponential uncertainties via switched state feedback and switched dynamic output feedback is investigated, respectively. By using Taylor series approximation and convex polytope technique, exponentially uncertain discrete-time switched linear system is transformed into an equivalent switched polytopic model with additive norm bounded uncertainty. For such equivalent switched model, one designs its switching strategy and associated state feedback controllers and dynamic output feedback controllers so that whole switched model is asymptotical stabilization with H-in nity disturbance attenuation base on switched Lyapunov function and LMI approach. Finally, two numerical examples are presented to illustrate our results.

Constrained Structured Sliding Mode Control for Position Tracking-Force Reflection Control of Master-Slave Manipulator (마스터-슬레이브 조작기의 위치추종-힘반영을 위한 제한 구조 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.48-58
    • /
    • 2010
  • In this study, position tracking and force reflection control of a master-slave manipulator which will be used for handling objects contaminated by radioactivity has been addressed. Since available measurements concerning on dynamic motion of the master-slave manipulator are restricted, a simple constrained control structure was suggested. In the consideration of the uncertain dynamic behaviors of the slave manipulator which is dependent upon mass and shape of work pieces grasped and dynamic properties of the environment contacted, a simple structured sliding mode control was suggested to guarantee robustness with respect to parameter uncertainties and external disturbances. The proposed control was applied to a 1-DOF master-slave link system. The control performances were verified along with some computer simulation results.

Study of Adaptive Learning Control for Robot-Manipulator (로봇 매니퓰레이터의 적응학습제어에 관한 연구)

  • 최병현;국태용;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.396-400
    • /
    • 1996
  • It is prerequisite to apply dynamics controller to control robot manipulator required to perform fast and Precise motion. In this Paper, we Propose an adaptive 3earning control method for the dynamic control of a robot manipulator. The proposed control scheme is made up of PD controller in the feedback loop and the adaptive learning controller in the feedforward loop. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a SCARA robot and experimentally verified.

  • PDF

Task Allocation Framework Incorporated with Effective Resource Management for Robot Team in Search and Attack Mission (탐지 및 공격 임무를 수행하는 로봇팀의 효율적 자원관리를 통한 작업할당방식)

  • Kim, Min-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2014
  • In this paper, we address a task allocation problem for a robot team that performs a search and attack mission. The robots are limited in sensing and communication capabilities, and carry different types of resources that are used to attack a target. The environment is uncertain and dynamic where no prior information about targets is given and dynamic events unpredictably happen. The goal of robot team is to collect total utilities as much as possible by destroying targets in a mission horizon. To solve the problem, we propose a distributed task allocation framework incorporated with effective resource management based on resource welfare. The framework we propose enables the robot team to retain more robots available by balancing resources among robots, and respond smoothly to dynamic events, which results in system performance improvement.

Parallel-Jaw Grasp Planning of Polygonal Parts in Uncertain Dynamic Environments (불확실 동적 환경에서 다각형 부품의 평행-턱 파지 계획)

  • Han, Inhwan;Cho, Jeongho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.126-135
    • /
    • 1997
  • A sensorless motion planner which succeeds in grasping a polygonal part firmly into a desired orientation has been developed through the dynamic analysis. The analytical results on the impact process with friction are used for modeling the contact motionduring the parallel-jaw grasp operation, which is com- posed of the pushing and the squeezing process. The developed planner succeeds in grasping a part into a specified orientation in the face of uncertainties of initial position and orientation of the part, motion direction of the finger, and the physical parameters such as the coefficients of friction and restitution. The motion planner has been fully implemented into a viable package on the computer system, and verified experimentally. The motion of parts is recorded using a high-speed video camera, and then compared to the results of the planner and the graphic simulation results that illustrate the simulated motion of the grasp operation.

  • PDF

AUTOMATIC TUNING OF FUZZY OPTIMAL CONTROL SYSTEM

  • Hoon-Kang;Lee, Hong-Gi-;Kim, Yong-Ho-;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1195-1198
    • /
    • 1993
  • We investigate a systematic design procedure of automated rule generation of fuzzy logic based controller for uncertain dynamic systems such as an engine dynamic model.“Automated Tuning”means autonomous clustering or collection of such meaningful transitional relations in the state-space. Optimal control strategies are included in the design procedures, such as minimum squared error, minimum time, minimum energy or combined performance criteria. Fuzzy feedback control systems designed by the cell-state transition method have the properties of closed-loop stability, robustness under parameter variabtions, and a certain degree of optimality. Most of all, the main advantage of the proposed approach is that reliability can be potentially increased even if a large grain of uncertainty is involved within the control system under consideration. A numerical example is shown in which we apply our strategic fuzzy controller design to a highly nonlinear model of engine idle speed contr l.

  • PDF

A Study on the Construction of the Flexible Long-Term Generation Mix under Uncertainties of Power System (전력계통(電力系統)의 불확실성(不確實性)을 포함한 유연(柔軟)한 장기전원구성(長期電源構成)의 수립에 관한 연구(硏究))

  • Song, Kil-Yeong;NamGung, Jae-Young;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.159-162
    • /
    • 1993
  • A new approach using fuzzy dynamic programming is proposed for the flexible long-term generation mix under uncertain circumstances. A characteristic feature of the presented approach is that not only fuzziness in fuel and construction cost. load growth and reliability but also many constraints of generation mix can easily be taken into account by using fuzzy dynamic programming. The method can accommodate arbitrary shape of membership function as well as the operation of pump-generator. And so more realistic solution can be obtained. The effectiveness of the proposed approach is demonstrated by the best generation mix problem of KEPCO-system which contains nuclear, coal, LNG, oil and pump-generator hydro plant in multi-years.

  • PDF

A Study on High Performance Controller Design of Elastic Maniplator (탄성매니퓰레이터의 고성능 제어기 설계에 관한 연구)

  • Lee, Ji-U;Han, Seong-Hyeon;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.73-82
    • /
    • 1992
  • An industrial robot, installed real manufacturing processes an element of the system autmation, can be considered as an uncertain system due to dynamic uncertainties in inertial parameters and varying payloads. Most difficuties in controlling a robot manipulator are caused by the fact that the dynamic equations describing the motions of the manipulator are inherently nonlinear and heavily coupled effects between joints and associated links. Existing robot conrol systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severly limited in range of application, speed of operation and variation of payload. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the desinger. The proposed manipulator studied has two loops, an inner loop of model reference adaptive controller and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstailiy approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in practical working environment, various load variations and parameter uncertainties.

  • PDF