• Title/Summary/Keyword: unbonded tendon

Search Result 83, Processing Time 0.038 seconds

Effects of Stressed and Unstressed Reinforcements on Prestressed Concrete Members with Unbonded Tendons

  • Moon, Jeong-Ho;Shin, Kyung-Jae;Lim, Jae-Hyung;Lee, Sun-Hwa
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • The research purpose of this paper is to investigate the influential Parameters on the unbonded tendon stress. The parameters were the reinforcing ratio, the prestressing ratio, and the loading type. To this end. first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with nine specimens. Test variables were the reinforcing ratio and the prestressing ratio. Specimens were divided equally into three groups and each group had a different level of the reinforcing ratio. Each specimen within a group has a different level of the prestressing ratio. The investigation with previous and current tests revealed the followings; (1) the length of crack distribution zone does not have a close relation with the length of plastic hinge. (2) the prestressing ratio does not affect both the length of crack distribution and the length of plastic hinge, (3) the tendon stress variation is in reverse relation with the ratios of mild steels and tendons, (4) the loading type nay not affect significantly the length of crack distribution zone, (5) AASHTO LRFD Code equation and Moon/Lim's design equation predicted the test results well with some safety margins.

  • PDF

Numerical Study on the Joints between Precast Post-Tensioned Segments

  • Kim, Tae-Hoon;Kim, Young-Jin;Jin, Byeong-Moo;Shin, Hyun-Mock
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.3-9
    • /
    • 2007
  • This paper presents a numerical procedure for analyzing the joints between precast post-tensioned segments. A computer program for the analysis of reinforced concrete structures was run for this problem. Models of material nonlinearity considered in this study include tensile, compressive and shear models for cracked concrete and a model for reinforcing steel with smeared crack. An unbonded tendon element based on the finite element method, that can describe the interaction between the tendon and concrete of prestressed concrete member, was experimentally investigated. A joint element is newly developed to predict the inelastic behavior of the joints between segmental members. The proposed numerical method for the joints between precast post-tensioned segments was verified by comparison of its results with reliable experimental results.

Flexural Behavior of Prestressed Concrete Beams with CFRP(Carbon Fiber Reinforced Plastic) Tendons (CFRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 휨거동)

  • 조병완;태기호;최용환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.639-644
    • /
    • 2000
  • Prestressing steels are susceptible to corrosion, which is considered the major reason in the deterioration of prestressed concrete structures. To solve this problem, many research have been made to utilize new type of tendons. FRP tendons have many advantages compared to steel tendons. However, FRP tendons have some disadvantages, such as no plastic behavior. This study focused on the flexural behavior of prestresssed concrete beams which is fabricated by post-tensioning method with CFRP (Carbon Fiber Reinforced Plastic) tendons. Th results drawn from the study, prestressed concrete beams with CFRP tendons have higher flexural cracking load, flexural yielding load, and flexural fracture load. While displacement at the fracture stage is lower compared to prestressed concrete beams with steel tendon. Excessive steel reinforcement lead lower ductility index. So, appropriate reinforcement guideline is needed. Further more, prestressed concrete beams with CFRP tendons can have sufficient ductility index when ruptured by crushing of concrete or used unbonded tendon. Therefore, the best design method for prestressed concrete beams with CFRP tendons is over-reinforcement, and use of unbonded tendon.

  • PDF

Flexural ductility of prestressed concrete beams with unbonded tendons

  • Au, F.T.K.;Chan, K.H.E.;Kwan, A.K.H.;Du, J.S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.451-472
    • /
    • 2009
  • Based on a numerical method to analyse the full-range behaviour of prestressed concrete beams with unbonded tendons, parametric studies are carried out to investigate the influence of 11 parameters on the curvature ductility of unbonded prestressed concrete (UPC) beams. It is found that, among various parameters studied, the depth to prestressing tendons, depth to non-prestressed tension steel, partial prestressing ratio, yield strength of non-prestressed tension steel and concrete compressive strength have substantial effects on the curvature ductility. Although the curvature ductility of UPC beams is affected by a large number of factors, rather simple equations can be formulated for reasonably accurate estimation of curvature ductility. Conversion factors are introduced to cope with the difference in partial safety factors, shapes of equivalent stress blocks and the equations to predict the ultimate tendon stress in BS8110, EC2 and ACI318. The same equations can also be used to provide conservative estimates of ductility of UPC beams with compression steel.

Prediction Model of Unbonded Tendon Stresses in Post-Tensioned Members (포스트텐션 부재에서 비부착긴장재의 응력 거동 예측 모델)

  • Kim, Kang-Su;Lee, Deuck-Hang;Kal, Gyung-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.763-771
    • /
    • 2009
  • As the demand on long span structures increases more in recent years, the excessive deflection, in addition to the ultimate strength, in horizontal members becomes a very important issue. For this reason, as an alternative method to effectively solve the deflection problems, the application of post-tensioned structural system with unbonded tendon increases gradually. However, most of the existing researches on post-tensioned members with unbonded tendons (UPT) focused on the ultimate flexural strength, which would be impossible or improper to check serviceability such as deflections. Therefore, this study aims at proposing a stress prediction model for unbonded tendons that is applicable to the behavior of UPT members from the very initial loading stages, post-cracking states, and service to ultimate conditions. The applicability and accuracy of the proposed model were also evaluated comparing to the existing test results from literature. Based on such comparison results, it was verified that the proposed model provided very good predictions on tendon stresses of UPT members at various loading stages regardless their different characteristics; wide range of reinforcement index, different loading patterns, and etc. The proposed model especially well considered the effect of various loading types on stress increases of unbonded tendons, and it was also very suitable to apply on the over-reinforced members that easily happened during strengthening/repairing work.

An Analytical Study for Structural Behaviors of Unbonded Precast Rectangular Hollow Section Concrete Piers (비부착 프리캐스트 중공 사각 단면 교각의 구조거동에 관한 해석적 연구)

  • Choi, Seung-Won;Kim, Ick-Hyun;Cho, Jae-Yeo;Chang, Sung-Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.61-69
    • /
    • 2010
  • Unbonded precast concrete piers have better seismic performances than conventional reinforced concrete piers. In this research, seismic performances of unbonded precast prestressed concrete piers are analyzed using OpenSEES. Main parameters of analysis are concrete strength, jacking force ratio, ratio of tendon, and size of precast segment. In results, as the ratio of tendon and jacking force ratio increase, the flexural strength increases at softening state and ultimate state. Concrete strength and size of precast segment are negligible. But initial jacking force ratio leads to early yielding of prestressing tendon. Since compressive strain in core concrete is much less than ultimate strain, it can be expected that the amount of transverse steel reinforcement is to be reduced in comparison with conventional reinforced concrete column.

Performance Evaluation of Prestressed Concrete Girder Bridges by External Tendon (외부긴장재를 이용한 프리스트레스트 콘크리트 거더교의 성능평가)

  • 박승범;방명석;홍석주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.685-688
    • /
    • 1999
  • The analysis and design of composite girders prestressed by external tendons involve difficulties related to the position of anchorages and the construction sequences. In this paper, the efficiency of the external tendon profiles and the position of anchorages in examined for the internal and external prestressing of statically indeterminate structures. It is shown that strengthening of a prestressed girder can be accomplished using a variety of methods; bonded external prestressing, tendon replacement and unbonded external prestressing.

  • PDF

Verification of Proposed Design Equation for Stress Evaluation of Unbonded Tendons (비부착 긴장재의 응력을 평가하기 위해 제안된 설계식의 타당성검증)

  • Lim, Jae-Hyung;Moon, Jeong-Ho;Lee, Li-Hyung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.127-137
    • /
    • 1999
  • In the previous study in relation to the current study, a test program for the verification of the proposed design equation was carried with fourteen prestressed concrete beams with unbonded tendons. Experimental results were compared with the computed results by the proposed design equations. The previous design equations are ACI code, AASHTO LRFD code, the analysis equation with the strain compatibility, Harajli/Kanj' design equation, Chakrabarti' design equation. As a result of comparative studies, it turned out that the proposed design equation could predict the ultimate tendon stress with comparatively high accuracy.

Ebaluation of Ultimate Stress of Unbonded Tendon in Prestressed Concrete Members(I)-Considereateon of ACI code and the State-of -the Art- (프리스트레스트 콘크리트 부재에서 비부착 긴장재의 극한응력 평가에 관한 연구(I)-기존연구 및 ACI 규준식의 고찰-)

  • 임재형;문정호;음성우;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.167-176
    • /
    • 1997
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the first part. previous design equations were examined in oder to find whether any modifications may be needed. A total of 167 experimental results tested for more than 40 years were gathered to build D/B and then previous proposed and codified equations were evaluated with the experimental relsults. The ACI Code equation and Naaman, Harajli, and Chakrabarti's equations were chosen for the purpose of examination. Then, the followings were obtained from the analytical examination. It is desirable to compute the tendon stress with the member analysis method instead of the sectional analysis method which has been used in the current ACI Code. The tendon stress may also be influenced significantly by the amount of ordinary bonded reinforcements and the loading types. And the current ACI Code overestimated the effect of span/depth ratio. As results, it was concluded that the revision of the ACi Code equation should be considered positively. Then, a new design has to be proposed with the reasonable and comprehensive investigation about influential factors on the tendon stress variation.

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.