• Title/Summary/Keyword: unbonded external tendon

Search Result 19, Processing Time 0.016 seconds

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

An Improved Analysis Model for the Ultimate Behavior of Unbonded Prestressed Concrete

  • Cho, Taejun;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.149-157
    • /
    • 2017
  • An innovative analysis method is proposed in this paper for the determination of ultimate resistance of prestressed concrete beams. The proposed method can be applied to simply supported or continuous beams in a unified manner whether structure and external loads are symmetric or not. Through the iterative nonlinear strain compatibility solutions, this method can also be applied to the non-prismatic section/un-symmetrical composite structures under moving load. The conventional studies have used the failure criteria when the strain of concrete reaches 0.003. However compared with bonded case, the value of strain in the reinforcement is much smaller than bonded case, thus, unbonded prestressed cases show compressive failure mode. It is shown that the proposed method gives acceptable results within 5% error compared with the prior experimental results. It can be shown that the proposed method can reach the solution much faster than typical three-dimensional finite element analysis for the same problem. This method is applicable to the existing unbonded prestressed members where deterioration has occurred leading to the reduced ultimate resistance or safety. In all, the proposed procedure can be applied to the design and analysis of newly constructed structures, as well as the risk assessment of rehabilitated structures.

Data-driven SIRMs-connected FIS for prediction of external tendon stress

  • Lau, See Hung;Ng, Chee Khoon;Tay, Kai Meng
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.55-71
    • /
    • 2015
  • This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing the complete physical knowledge of the system. The monotonicity property is then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. This method is then validated using results from test data of the literature. Several parameters, such as initial tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective beam span are considered. A computer simulation for estimating the stress increase in externally prestressed tendon, ${\Delta}f_{ps}$, is then reported. The contributions of this paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy modeling and (ii) it provides a novel solution for estimating the ${\Delta}f_{ps}$ even without a complete physical knowledge of unbonded tendons.

Proposals for flexural capacity prediction method of externally prestressed concrete beam

  • Yan, Wu-Tong;Chen, Liang-Jiang;Han, Bing;Wei, Feng;Xie, Hui-Bing;Yu, Jia-Ping
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.363-375
    • /
    • 2022
  • Flexural capacity prediction is a challenging problem for externally prestressed concrete beams (EPCBs) due to the unbonded phenomenon between the concrete beam and external tendons. Many prediction equations have been provided in previous research but typically ignored the differences in deformation mode between internal and external unbonded tendons. The availability of these equations for EPCBs is controversial due to the inconsistent deformation modes and ignored second-order effects. In this study, the deformation characteristics and collapse mechanism of EPCB are carefully considered, and the ultimate deflected shape curves are derived based on the simplified curvature distribution. With the compatible relation between external tendons and the concrete beam, the equations of tendon elongation and eccentricity loss at ultimate states are derived, and the geometric interpretation is clearly presented. Combined with the sectional equilibrium equations, a rational and simplified flexural capacity prediction method for EPCBs is proposed. The key parameter, plastic hinge length, is emphatically discussed and determined by the sensitivity analysis of 324 FE analysis results. With 94 collected laboratory-tested results, the effectiveness of the proposed method is confirmed, and comparisons with the previous formulas are made. The results show the better prediction accuracy of the proposed method for both stress increments and flexural capacity of EPCBs and the main reasons are discussed.

Ultimate Stress of Prestressing CFRP Tendons in PSC Beams Strengthened by External CFRP Prestressing (외부 CFRP 프리스트레싱으로 보강된 PSC 보에서 CFRP 텐던의 극한응력)

  • Park, Sang-Yeol;Kim, Chang-Hoon;Hong, Seong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.735-744
    • /
    • 2007
  • This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing (PS) CFRP, and experimental test with the parameters affecting the ultimate stress of prestressing CFRF in prestressed concrete beams strengthened by external prestressing. The ACI (American Concrete Institute) predicting equation for the ultimate stress of unbonded prestressing CFRP is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationally the effect of internal PS steel into consideration as a function of prestressing tendon depth to neutral depth ratio. In the experimental study, prestressed concrete beams strengthened using external prestressing CFRP are tested with the test parameters having a large effect on the ultimate stress of prestressing CFRP. The test parameters includes infernal prestressing steel and external prestressing CFRP tendon reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing CFRP.

Ultimate Stress of Prestressing Steel with Different Reinforcement and Tendon Depth in R.C Beams Strengthened by External Prestressing (외부 프리스트레싱으로 보강된 R.C 보에서 강재량 및 텐던깊이에 따른 프리스트레싱 강재의 극한응력)

  • Park, Sang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.585-593
    • /
    • 2003
  • This study deals with literature review, developing a predicting equation for the ultimate stress of prestressing steel, and experimental test with the parameters affecting the ultimate stress of prestressing steel in reinforced concrete beams strengthened by external prestressing. The ACI predicting equation for the ultimate stress of unbonded prestressing steel is analyzed to develop a new integrated predicting equation. The proposed predicting equation takes rationally the effect of internal reinforcing bars into consideration as a function of prestressing steel depth to neutral depth ratio. In the experimental study, steel reinforced concrete beams strengthened using external prestressing steel are tested with the test parameters having a large effect on the ultimate stress of prestressing steel. The test parameters includes reinforcing bar and external prestressing steel reinforcement ratios, and span to depth ratio. The test results are analyzed to confirm the rationality and applicability of the proposed equation for predicting the ultimate stress of external prestressing steel.

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis I (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 I)

  • Noh, Sanghoon;Jung, Raeyoung;Kim, Sung-Taek;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.523-533
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. An initial numerical analysis was performed to simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. But the analysis results by the initial model expected smaller displacements than the measured ones by 30% at some locations. Accordingly, the research and development to improve the initial model to corelate the measured results of the SIT more properly have been performed. In this paper, the effects of the loss of concrete due to duct for tendons and the contact of duct and tendons in un-bonded tendon system are mainly evaluated based on the preliminary analysis results. In addition, the importances of the proper definition of mesh connectivity among structural elements of concrete, liner plates, rebars and tendons are discussed.

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis II (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 II)

  • Noh, Sanghoon;Jung, Raeyoung;Lee, Byungsoo;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. In this paper, numerical analyses are presented, which simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. A sophisticate structural analysis model is developed to simulate the structural behavior during the SIT properly based on various preliminary analysis results considering contact condition among structural elements. From the comparison of the analysis and test results based on the acceptance criteria of ASME CC-6000, it can be concluded that the construction quality of the containment has been well maintained and the acceptable performance of new design features has been verified.