• 제목/요약/키워드: unbalanced system

검색결과 570건 처리시간 0.029초

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

퍼지이론을 이용한 3상 2회선 불평형 송전선로에서의 전자계에 대한 인체 위험 가능성평가 (Assessment of Possibility on the Human Risk for the Electromagnetic Field of Unbalanced Two Coupled Three-phase Transmission Line Using Fuzzy Theory)

  • 김상철;김두현
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.22-28
    • /
    • 2006
  • This paper presents assessment of possibility on the human risk for the electromagnetic field of unbalanced two coupled three-phase transmission line using fuzzy theory. Three phase load flow program was developed which employed a Newton-Raphson method as a tool to analyze system unbalanced. This research presents a method of handling two coupled three phase transmission system unbalance analysis and unbalanced power demand as a function of voltages. As the results of case study, in case of 345[kV] T/L, the electric field intensity was 10.9540[kV/m], magnetic field intensity was 0.2567[G] in severest case. The results showed that the membership of a proposition fuzzy '10.9540 [kV/m] is hazardous' is 0.6349. As the analytic results using the fuzzy qualifier term, the membership in case of very false is 0.1379 and fairly false is 0.6124, respectively. In assessment of fuzzy measure possibility for the electromagnetic field, this paper used probability of fuzzy arid measure of fuzziness technique.

Multi-objective Unbalanced Distribution Network Reconfiguration through Hybrid Heuristic Algorithm

  • Mahendran, G.;Sathiskumar, M.;Thiruvenkadam, S.;Lakshminarasimman, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.215-222
    • /
    • 2013
  • Electrical power distribution systems are critical links between the utility and customer. In general, power distribution systems have unbalanced feeders due to the unbalanced loading. The devices that dependent on balanced three phase supply are affected by the unbalanced feeders. This necessitates the balancing of feeders. The main objective of reconfiguration is to balance the loads among the phases subject to constraints such as load flow equations, capacity and voltage constraints and to reduce the real power loss, while subject to a radial network structure in which all loads must be energized. Therefore, the distribution system reconfiguration problem has been viewed as multi-objective problem. In this paper, the hybrid heuristic algorithm has been used for reconfiguration, which is the combination of fuzzy and greedy algorithms. The purpose of the introduction of greedy is to refrain the searching for the period of phase balancing. The incorporation of fuzzy helps to take up more objectives amid phase balancing in the searching. The effectiveness of the proposed method is demonstrated through modified IEEE 33 bus and modified IEEE 125 bus radial distribution system.

Source Current Control Strategy of Active Power Filters for Unbalanced Load Compensation in Three-Phase Four-Wire Distribution Networks

  • Wang, Lei;Han, Xiaoqing;Meng, Runquan;Ren, Chunguang;Wang, Qi;Zhang, Baifu
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1545-1554
    • /
    • 2018
  • This paper proposes a modified control strategy to improve the performance of three-phase four-leg shunt active power filters (APFs) for the compensation of three phase unbalanced loads. Unbalanced current cannot be obtained accurately by a harmonic detector due to the lower frequency. The proposed control strategy eliminates conventional harmonic detectors by directly regulating the source current. Therefore, the computational complexity is greatly reduced and the performance of the APF is improved. A mathematic model has been developed based on the source currents. The corresponding controllers have been designed based on the sinusoidal internal model principle. The proposed control strategy can guarantee excellent compensation performance and stable operation after an extreme disturbance such as a short circuit fault. In addition, the proposed technique can selectively compensate specific harmonics. A 50kVA prototype APF is implemented in the laboratory to validate the feasibility and performance of the proposed control strategy.

불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선 (Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions)

  • 보위엔뀌투;이동춘
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

불평형 전압으로 운전시 비선형 부하에 나타나는 현상 (The Phenomena Giving Rise of Nonlinear Load Operated by Unbalance Voltage)

  • 김종겸;이은웅
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.285-291
    • /
    • 2002
  • In general, utility voltage is maintained at a relatively low level of Phase unbalance since a low level of unbalance can cause a significant power supply ripple and heating effects on the power system equipment. Voltage unbalance more commonly emerges in individual customer loads due to phase load unbalanced, especially where single phase power loads are used. Under unbalanced input voltages large lower order harmonics appears at the input and output ports of Power conversion devices. As the application of adjustable -speed drives (ASDs) and their integration with complex industrial processes increase, so does the need to understand how ASDs perform during voltage This paper describes a real load test to investigate the performance of 3-HP adjustable speed drives by an unbalanced voltage at the low-voltage system.

불평형 부하에서의 능동필터에 관한 연구 (The Study on the Active Power Filter in Unbalanced Load)

  • 최시영;이우철;이택기;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권3호
    • /
    • pp.130-140
    • /
    • 2001
  • This paper presents the performance of a parallel active power filter(PT) system in unbalanced load condition. The unbalanced load leads to negative sequence of current, and makes 120Hz ripple in the DC-link voltage forcing large capacitance and increases the rating of APF. thus, the separation of negative sequence is performed in synchronous reference frame and controlled to flow into supply network. The validity of the scheme is investigated through simulation and the experimental results for a prototype active power filter system rated at 10kVA.

  • PDF

부하 불평형율에 대한 새로운 해석 (A New Analysis for Load Unbalance Factor)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.67-72
    • /
    • 2006
  • Most of the load distributions in low voltage power feeder distribution systems are designed with approximately balanced and connected at the three phase four wire systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating load unbalance. Load unbalance factor is mainly affected by the impedance of load system. Unbalanced current will draw a highly unbalanced voltage. This paper presents a new calculation method for unbalance factor under the load variation at the three phase four wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared with the current unbalance factor. Two methods are indicated similar results.