• Title/Summary/Keyword: ultraviolet spectra

Search Result 212, Processing Time 0.019 seconds

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Comparison of Flavonoid Characteristics between Blueberry (Vaccinium corymbosum) and Black Raspberry (Rubus coreanus) Cultivated in Korea using UPLC-DAD-QTOF/MS (UPLC-DAD-QTOF/MS를 이용한 국내 재배 블루베리(Vaccinium corymbosum)와 복분자(Rubus coreanus)의 플라보노이드 특성 비교)

  • Jin, Young;Kim, Heon-Woong;Lee, Min-Ki;Lee, Seon-Hye;Jang, Hwan-Hee;Hwang, Yu-Jin;Choe, Jeong-Sook;Lee, Sung-Hyun;Cha, Youn-Soo;Kim, Jung-Bon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • BACKGROUND: The objective of this study was to identify and compare the main phenolic compounds (anthocyanins, flavonoids, phenolic acids) in blueberry and black raspberry cultivated in Korea using ultra-performance liquid chromatography diode array detection-quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS). METHODS AND RESULTS: Twenty-nine flavonoids were identified by comparison of ultraviolet and mass spectra with data in a chemical library and published data. Blueberry contained flavonols including kaempferol, quercetin, isorhamnetin, myricetin, and syringetin aglycones. Isorhamnetin 3-O-robinobioside, kaempferol 3-O-(6"-O-acetyl)glucoside, quercetin, quercetin 3-O-arabinofuranoside (avicularin), quercetin 3-O-(6''-O-malonyl) glucoside, and quercetin 3-O-robinobioside were detected for the first time in blueberry. The flavonoids in raspberry consisted of quercetin aglycone and its glycosides. The mean total flavonoid content in blueberry [143.0 mg/100 g dry weight (DW)] was 1.5-times that in raspberry (95.4 mg/100 g DW). The most abundant flavonoid in blueberry was quercetin 3-O-galactoside (hyperoside, up to 76.1 mg/100 g DW) and that in raspberry was quercetin 3-O-glucuronide (miquelianin, up to 55.5 mg/100 g DW). Miquelianin was not detected in blueberry. CONCLUSION: Flavonol glycosides were the main flavonoids in blueberry and black raspberry cultivated in Korea. The composition and contents of flavonoids differed between blueberry and black raspberry, and may be affected by the cultivar and cultivation conditions.