A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench

순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구

  • Published : 2009.09.30

Abstract

The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

산성 용액의 수처리가 폴리아크릴로니트릴계 중공사형 한외여과막에 미치는 영향을 십자흐름 방식의 순환식 막 모듈 여과 장치를 이용하여 연구하였다. 막 모듈 여과장치를 이용하여 pH 2인 강산성 용액의 수처리를 시작한 지 약 80시간이 경과되었을 때 막 투과량(permeate flux)이 급격히 감소하는 것을 관측하였다. 또한, 수처리 시간 별로 막 모듈 여과장치의 공급조에서 채취한 샘플 용액의 자외선/가시광선 흡수 스펙트럼과 기체 크로마토그래피/질량분석(gas chromatography/mass spectrometry, GC/MS) 스펙트럼을 분석한 결과 수처리 시간이 경과함에 따라 막 모듈을 통과한 농축액 속에 새로운 유기 화합물이 생성된다는 사실을 알아내었다. 질량스펙트럼 분석을 통해 이 화합물을 1,6-dioxacyclododecane-7,12-dione이라고 예측하였으며, 각종 플라스틱 특히 폴리우레탄 제조 시 사용되는 첨가제 중 하나라는 사실도 알아내었다. 수처리에 사용된 막에 대한 전자주사 현미경 사진 및 고체 NMR 분석 등의 추가 실험을 통해 산성 용액 수처리 과정에서 발생한 막 투과량의 감소는 산성 용액 하에서 일어나는 UF막의 변형에 의한 것이 아니라 막 모듈 여과장치에 사용된 폴리우레탄 튜브에서 산과의 반응에 의해 용출된 저 분자량의 유기화합물이 막 오염 현상을 일으켰기 때문인 것으로 결론지었다. 이번 연구 결과는 산성 용액의 수처리 공정 시 UF막 자체의 산에 대한 반응성 뿐 아니라 막 모듈을 포함한 수처리 장치 자체의 산에 대한 반응성 역시 산 용액의 수처리 효율은 물론, 산을 이용한 막의 화학 세정 효율 및 수처리 막의 pH 사용 한계를 결정하는 데 매우 중요한 요소 중 하나라는 것을 보여준다.

Keywords

References

  1. T. Carroll, S. King, S. R. Gray, B. A. Bolto, and N. A. Booker, 'The fouling of microfiltration membranes by NOM after coagulation treatment', Water Res., 34, 2861 (2000) https://doi.org/10.1016/S0043-1354(00)00051-8
  2. J. H. Chung, K. H. Choo, and H. S. Park, 'Low pressure hybrid membrane processes for drinking water treatment', Membrane Journal, 17, 161 (2007)
  3. S. R. Chae, H. Yamamura, K. Ikeda, and Y. Watanabe, 'Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination', Water Res., 42, 2029 (2008) https://doi.org/10.1016/j.watres.2007.12.011
  4. A. W. Zularisam, A. F. Ismail, and R. Salim, 'Behaviours of natural organic matter in membrane fil-tration for surface water treatment', Desalination, 194, 211 (2006) https://doi.org/10.1016/j.desal.2005.10.030
  5. J. Y. Park, 'Lake water treatment using a ultrafiltration membrane process of hollow fiber type', Membrane Journal, 7, 39 (1997)
  6. A. G. Fane and C. J. D. Fell, 'A review of fouling and fouling control in ultrafiltration', Desalination, 62, 117 (1987) https://doi.org/10.1016/0011-9164(87)87013-3
  7. Y. T. Lee and J. K. Oh, 'A study on the optimization of process and operation condition for membrane system in tap water treatment', Membrane Journal, 9, 193 (1999)
  8. K. H. Youm, 'A study on concentration polarization layer resistance in ultrafiltration of macromolecular solutions', Membrane Journal, 2, 59 (1992)
  9. R. Ghosh and Z. F. Cui, 'Purification of lysozyme using ultrafiltration', Biotechnol. Bioeng., 68, 191 (2000) https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<191::AID-BIT8>3.0.CO;2-A
  10. R. Ghosh and Z. F. Cui, ;Protein purification by ultrafiltration with pre-treated membrane', J. Membr. Sci., 167, 47 (2000) https://doi.org/10.1016/S0376-7388(99)00275-6
  11. A. V. R. Reddy, D. J. Mohan, A. Bhattacharya, V J. Shah, and P. K. Ghosh, 'Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties', J. Membr. Sci., 214, 211 (2003) https://doi.org/10.1016/S0376-7388(02)00547-1
  12. N. Schamagl and H. Buschatz, 'Polyacrylonitrile (PAN) membranes for ultra- and microfiltration', Desalination, 139, 191 (2001) https://doi.org/10.1016/S0011-9164(01)00310-1
  13. M. KuloVaara, S. Metsamuuronen, and M. Nystrom, 'Effects of aquatic humic substances on hydrophobic ultrafiltration membrane', Chemosphere, 38, 3485 (1999) https://doi.org/10.1016/S0045-6535(98)00577-3
  14. A. R. Costa and M. N. de Pinho, 'Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solution', J. Membr. Sci., 255, 49 (2005) https://doi.org/10.1016/j.memsci.2005.01.016
  15. W. Yuan and A. L. Zydney, 'Effects of solution environment on humic acid fouling during microfiltration', Desalination, 122, 63 (1999) https://doi.org/10.1016/S0011-9164(99)00028-4
  16. M. S. Oak, T. Kobayashi, H. Y. Yang, T. Fukaya, and N. Fujii, 'pH effiect on molecular size exclusion of polyacrylonitrile uitrafiltration membranes having carboxylic acid group', J. Membr. Sci., 123, 185 (1997) https://doi.org/10.1016/S0376-7388(96)00214-1
  17. S. Belfer, 'Modification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers: pH-dependent behavior of the modified membranes', Reactive & Functional Polymer, 54, 155 (2003) https://doi.org/10.1016/S1381-5148(02)00191-8
  18. J. Brinck, A.-S. Jonsson, B. Jonsson, and J. Lindau, 'Influence of pH on the adsorptive fouling of ultrafiltration membranes by fatty acid', J. Membr. Sci. , 164, 187 (2000) https://doi.org/10.1016/S0376-7388(99)00212-4
  19. G. Singh and L. Song, 'Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of sillica nanoparticles in crossflow ultrafiltration', J. Membr. Sci., 303, 112 (2007) https://doi.org/10.1016/j.memsci.2007.06.072
  20. M. Watanabe, C. Nakata, W. Wu, K. Kawamoto, and Y. Noma, 'Characterization of semi-volatile organic compounds emitted during heating of nitrogen containing plastics at low temperature', Chemosphere, 68, 2063 (2007) https://doi.org/10.1016/j.chemosphere.2007.02.022