• Title/Summary/Keyword: ultraviolet/visible spectrum

Search Result 48, Processing Time 0.03 seconds

Theoretical Investigation of the Generation of Broad Spectrum Second Harmonics in Pna21-Ba3Mg3(BO3)3F3 Crystals

  • Kim, Ilhwan;Lee, Donghwa;Lee, Kwang Jo
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2021
  • Borate nonlinear optical crystals have been used as frequency conversion devices in many fields due to their unique transparency and nonlinearity from ultraviolet to visible spectral range. In this study, we theoretically and numerically investigate the properties of broadband second harmonic generation (SHG) in the recently reported Pna21-Ba3Mg3(BO3)3F3 (BMBF) crystal. The technique is based on the simultaneous achievement of birefringence phase matching and group velocity matching between interacting waves. We discussed all factors required for broadband SHG in the BMBF in terms of two types of phase matching and group velocity matching conditions, the beam propagation direction and the corresponding effective nonlinearity and spatial walk-off, and the spectral responses. The results show that bandwidths calculated in the broadband SHG scheme are 220.90 nm (for Type I) and 165.85 nm (for Type II) in full-width-half-maximum (FWHM). The central wavelength in each case is 2047.76 nm for Type I and 1828.66 nm for Type II at room temperature. The results were compared with the non-broadband scheme at the telecom C-band.

Dyeability and Functionality of Dried Dendropanax morbiferus Extracts (건조 황칠나무 부위별 추출물을 이용한 견직물의 염색성과 기능성)

  • Dayae Kang;Jungsoon Lee
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.67-81
    • /
    • 2023
  • This study aims to examine the possibility of using dried Dondropanax morbiferus extract as a functional dye. The leaves and branches of were extracted with distilled water and 30% ethanol, and the dyeability and functionality of silk fabrics were examined according to the color characteristics of the extract and dyeing conditions. As a result of analyzing the ultraviolet and visible light absorption spectrum of the extract, it was possible to confirm the peak of flavonoid belonging to polyphenol, and the peak of riboflavin expressing yellow color was confirmed. Adsorption equilibrium was observed at 4% dyeing concentration and 60 minutes of dyeing time, and as the temperature increased, dyeing amount increased without color change of Y-series. Aluminum mordanting also increased the yellow color. The color fastness of washing and UV irradiation was low, but the color fastness of rubbing was evaluated as relatively good. The silk fabric dyed with the distilled water extract of the leaves showed a 99.9% bacteriostatic reduction against Staphylococcus aureus and Klebsiella pneumoniae, showing excellent antibacterial properties.

A Study on the Photoisomerization of Monolayer Film of Long Chain Fatty Acids Containing Azobenzene (아조벤젠을 함유한 장쇄 지방산 단분자 막의 광이성화 현상에 관한 연구)

  • Kim, Moo-Goon;Park, Tae-Gone;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 1996
  • The absorption spectra of synthesis of long chain fatty acid containing azobenzene start from p-(p'-hydroxy phenyl azo)-benzoic acid was investigated by ultraviolet spectrophotometery in chloroform solvent at the various temperature. In addition, The pressure-area of the water-air interface was obtained and the LB film was fabricated onto a quartz slide and quartz crystal by conventional Langmuir-Blodgett(LB) method. The UV absorption spectra of Langmuir-Blodgett(LB) film on quartz slide and spectrum of monolayer formed on quartz crystal have been measured. Long chain fatty acid containing azobenzene are induced phtoisomerization by the application of u. v. and visible light irradiation alternatively the reversibility of phtoisomerization was more clear difference when the number of $C_{n}$ increased but, not so good at $C_{14}-azo$. At the pressure-area isotherms, the value of surface pressure increment were decreased when the number of $C_{n}$ increased. A surface pressure of 20mN/m was obtained as a proper one for a film deposition. The photoisomerization at LB films were induced by application of UV and visible light irradiation alternatively. So the LB film of long chain fatty acid containing azobenzene has possibility to being applied to functional molecular devices such as photomemory and light switching.

Characteristics and Dyeability of Chelidonium majus var. asiaticum Extracts with Different Solvents (추출 용매에 따른 애기똥풀 색소의 특성 및 염색성)

  • Choi, Hyeong Yeol;Lee, Jung Soon
    • Korean Journal of Human Ecology
    • /
    • v.24 no.6
    • /
    • pp.859-871
    • /
    • 2015
  • The purpose of this study is to examine the influence of the pigment characteristic and changes in dying conditions on the dying properties by extracting Chelidonium majus var. asiaticum using distilled water and ethanol as solvents. Changes in dying conditions include variations in dye concentrations, dyeing temperatures and time on dye uptake, and K/S Value was compared according to these changes. Additionally, color changes were observed through mordant. Ultraviolet-visible spectrum was used to investigate the pigment characteristic, and as a result, tannin was identified in distilled-water-extract, whereas berberine and chlorophyll were identified in ethanol-extract. In FT-IR analysis, tannin in distilled-water-extract was verified as hydrolyzable tannin. For ethanol extract, chlorophyll was verified through absorption band of C-H, which is aliphatic spectrum around $2920cm^{-1}$ and $2850cm^{-1}$. From GC/MS analysis, oil components as well as terpine compounds were detected in ethanol-extract, and this, in turn, brings expectation regarding functionality. When dying in silk, dye uptake increased as concentration of the extract increased, and the optimum dyeing temperature and time were $40^{\circ}C$ and 60 minutes respectively. Dyed fabrics' colors were all basically Y-series colors, and adjustment in brightness and revelation of khaki color were also available depending on the type of the mordant. Color fastness, except for washing fastness, was good in silk dyed with distilled-water-extract. Thus, it can be concluded that by selecting the right extracting method and by doing proper dyeing and mordant according to the needs, these dyed fabrics can be used as eco-friendly, functional clothing material.

A Study on the Lighting Environment Standard for Museum Exhibition Halls, with a Focus on Color Temperature (박물관 전시 공간 조명 환경 기준 연구(I) - 색온도를 중심으로)

  • Lee, Sungeun;Roh, Hyunsook
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.65-76
    • /
    • 2017
  • Following advances in technology and with the growing need for renewable energy, fluorescent and halogen lamps are being replaced by LED lighting in museum systems. This paper researched the setting of standards for the diverse lighting systems in addition to the LED lighting that are expected to be introduced in museums in the future. Contrary to previous belief, LEDs were shown to only barely emit in the ultraviolet region, but the visible rays were confirmed to produce discoloration depending on illuminance-hours. When the color change by LED lamps at the color temperature of 2800K, or warm white, was compared with 5500K, or white, the emission spectrum analysis confirmed that the blue spike increased at a higher color temperature and caused more discoloration. This suggests that in addition to illumination, color temperature should be considered by including the emission spectrum when museums set lighting environment standards.

Absorption Spectra and Functional Group Contents of Peat and Humus Fractions in Korea (한국산(韓國産) 이탄(泥炭)과 토양부식물(土壤腐植物) 획분(劃分)의 흡수(吸收)스펙트럼 및 관능기(官能基)의 함량(含量))

  • Lim, Sun-Uk;Moon, Moo-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 1983
  • To characterize humus fractions in soil, visible, ultraviolet and infrared absorption spectra of humic acids in alkaline solutions and hymatomelanic acids in ethanol solutions extracted by Stevenson's method from paddy rice soils, peats, and volcanic ash soils were analyzed. The spectra patterns of both fractions in visible and ultraviolet ranges did not have any peak and the absorbance decreased as the wavelength increased. Visible and ultraviolet spectra of the solutions from all the peats, volcanic ash soils and paddy rice soil were very similar each other but absorbances were slowly declined in the order of volcanic ash soils, peats and mineral paddy soils. The infrared spectra of the two solutions appeared in a typical pattern, showing a few broad peaks. The main absorption bands were in the regions of $3400cm^{-1}$ (hydrogen bonded OH), near $2900cm^{-1}$ (aliphatic CH), $1720cm^{-1}$ (C=O of COOH, C=O of carbonyl), $1625cm^{-1}$ (aromatic C-C conjugated with C=O and/or COO-), $1400-1450cm^{-1}$ (CH stretch), $1200-1250cm^{-1}$ (CaO stretch of phenolic OH or OH-deformation of COOH) and $1050cm^{-1}$. The hymatomelanic acid fractions, however, had spectra that were characterized especially by very distinct absorption at $2900cm^{-1}$ and $1720cm^{-1}$, for aliphatic CH and carbonyl stretching vibration respectively in addition to the weaker bands for COO- or aromatic CH vibration at $1625cm^{-1}$, as compared to humic acid. No differences were noted in the general patterns of the spectograms of both fractions extracted. Analyses of the functional groups revealed little differences between peats and paddy soils, although total acidity and the content of carboxyl groups were decreased in the order of volcanic ash soils, peats and mineral paddy soils.

  • PDF

Sol-gel Derived-highly Transparent c-axis Oriented ZnO Thin Films (졸-겔법에 의한 c-축 배향성을 가진 고투과율 ZnO 박막의 제조)

  • Lee, Young-Hwan;Jeong, Ju-Hyun;Jeon, Young-Sun;Hwang, Kyu-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Purpose: A simple and efficient method to prepare nanocrystalline ZnO thin film with pure strong UV emission on soda-lime-silica glass substrates by low-temperature annealing was improved. Methods: Crystal structural, surface morphological, and optical characteristics of nanocrystalline ZnO thin films deposited on soda-lime-silica glass substrates by prefiring final annealing process at 300$^{\circ}C$ were investigated by using X-ray diffraction analysis, field emission-scanning electron microscope, scanning probe microscope, ultraviolet-visible-near infrared spectrophotometer, and photoluminescence. Results: Highly c-axis-oriented ZnO films were obtained by prefiring at 300$^{\circ}C$. A high transmittance in the visible spectra range and clear absorption edge in the ultra violet range of the film was observed. The PL spectrum of ZnO thin film with a deep near band edge emission was observed while the defect-related broad green emission was nearly quenched. Conclusions: Our work will be possibly adopted to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below 300$^{\circ}C$, in the future.

  • PDF

Optical Properties of Opal Glass on the Various Contents of Chemical Composition

  • Nguyen, Tuan Dung;N., Bramhe Sachin;Kim, Ji Ho;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • Opal glass samples having different chemical compositions were synthesized and transparent glass was obtained after melting. The effects of $TiO_2$, $BaF_2$, and $CeO_2$ content on the color of the opal glass were studied by observing images of the opal samples and analyzing the results via ultraviolet visible spectroscopy and color spectrometry. The aesthetic properties of the opal glass were determined by studying the transmittance of visible light in the 400 nm to 700 nm range. The basic chemical composition of opal glass was $SiO_2$ 52.9 wt%, $Al_2O_3$ 12.35 wt%, $Na_2CO_3$ 15.08 wt%, $K_2CO_3$ 10.35 wt%, $Ca_3(PO)_4$ 4.41 wt%, $MgCO_3$ 1.844 wt%, $LiCO_3$ 2.184 wt%, and $TiO_2$ 0.882 wt%. The glass samples were prepared by varying the weight percentage of $TiO_2$, $BaF_2$, and $CeO_2$. The transmittance of visible light was decreased from 95 % to 75 % in the glass samples in which $TiO_2$ content was increased from 0 to 3.882 wt%. In the blue spectrum region, as the content of $TiO_2$ increased, the reflectance value was observed to become higher. This implies that $TiO_2$ content induces more crystal formation and has an important effect on the optical properties of the glass. The opalescence of opal samples that contained $CeO_2$ or $BaF_2$ is stronger than that in the samples containing $TiO_2$. Opal glass samples comprising $TiO_2$ had tetragonal lattice structures; samples including $CeO_2$ as an additive had cubic lattice structures (FCC, $CeO_2$).

Photocatalytic Decomposition of Rhodamin B over Bi2MoO6 Prepared Using Hydrothermal Process (수열합성법으로 제조된 Bi2MoO6에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.123-128
    • /
    • 2019
  • $Bi_2MoO_6$ catalysts were successfully synthesized using ethylene glycol monomethyl ether (EGME), glycerol (GL), ethylene glycol (EG), and water as solvents by a conventional hydrothermal method. The synthesized catalysts were characterized by XRD, DRS, BET, SEM, and PL, and we also investigated the photocatalytic activity of these materials for the decomposition of Rhodamin B under visible light irradiation. The XRD results revealed the successful synthesis of 12-18 nm, well-crystallized ${\gamma}-Bi_2MoO_6$ crystals with an Aurivillius structure regardless of solvent. In addition, the $Bi_2MoO_6$ catalysts prepared below $140^{\circ}C$ showed an amorphous phase; however, those prepared above $160^{\circ}C$ showed well-crystallized ${\gamma}-Bi_2MoO_6$ crystals. All the catalysts have a similar absorption spectrum from the ultraviolet region up to the visible region less than 470 nm. This result suggests that all the $Bi_2MoO_6$ catalysts are potential visible-light-driven photocatalysts. The $Bi_2MoO_6$ catalysts prepared using EGME as a solvent showed the highest photocatalytic activity. In addition, the $Bi_2MoO_6$ catalysts prepared at $180^{\circ}C$ showed the highest photocatalytic activity. The PL peaks appeared at about 560 nm at all catalysts and the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of Rhodamin B. This suggests that the stronger the PL intensity, the larger the amount of oxygen vacancies and defects, and the higher the photocatalytic activity.

InP Quantum Dot-Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1491-1504
    • /
    • 2012
  • InP quantum dot (QD)-organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs are capped with myristic acid (MA), which are incompatible with typical silicone encapsulants. We have introduced a new ligand, 3-aminopropyldimethylsilane (APDMS), which enables embedding the QDs into vinyl-functionalized silicones through direct chemical bonding. The exchange of ligand from MA to APDMS does not significantly affect the UV absorbance of the InP QDs, but quenches the PL to about 10% of its original value with the relative increase in surface related emission intensities, which is explained by stronger coordination of the APDMS ligands to the surface indium atoms. InP QD-organosilicon nanocomposites were synthesized by connecting the QDs using a short cross-linker such as 1,4-divinyltetramethylsilylethane (DVMSE) by the hydrosilylation reaction. The formation and changes in the optical properties of the InP QD-organosilicon nanocomposite were monitored by ultraviolet visible (UV-vis) absorbance and steady state photoluminescence (PL) spectroscopies. As the hydrosilylation reaction proceeds, the QD-organosilicon nanocomposite is formed and grows in size, causing an increase in the UV-vis absorbance due to the scattering effect. At the same time, the PL spectrum is red-shifted and, very interestingly, the PL is quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nanocomposites, namely the scattering effect, F$\ddot{o}$rster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.