Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.5.1491

InP Quantum Dot-Organosilicon Nanocomposites  

Dung, Mai Xuan (Department of Chemistry, Chonnam National University)
Mohapatra, Priyaranjan (Department of Chemistry, Chonnam National University)
Choi, Jin-Kyu (Department of Chemistry, Chonnam National University)
Kim, Jin-Hyeok (Department of Material Science and Engineering, Chonnam National University)
Jeong, So-Hee (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials)
Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
Publication Information
Abstract
InP quantum dot (QD)-organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs are capped with myristic acid (MA), which are incompatible with typical silicone encapsulants. We have introduced a new ligand, 3-aminopropyldimethylsilane (APDMS), which enables embedding the QDs into vinyl-functionalized silicones through direct chemical bonding. The exchange of ligand from MA to APDMS does not significantly affect the UV absorbance of the InP QDs, but quenches the PL to about 10% of its original value with the relative increase in surface related emission intensities, which is explained by stronger coordination of the APDMS ligands to the surface indium atoms. InP QD-organosilicon nanocomposites were synthesized by connecting the QDs using a short cross-linker such as 1,4-divinyltetramethylsilylethane (DVMSE) by the hydrosilylation reaction. The formation and changes in the optical properties of the InP QD-organosilicon nanocomposite were monitored by ultraviolet visible (UV-vis) absorbance and steady state photoluminescence (PL) spectroscopies. As the hydrosilylation reaction proceeds, the QD-organosilicon nanocomposite is formed and grows in size, causing an increase in the UV-vis absorbance due to the scattering effect. At the same time, the PL spectrum is red-shifted and, very interestingly, the PL is quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nanocomposites, namely the scattering effect, F$\ddot{o}$rster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.
Keywords
InP quantum dot; Organosilicon; Nanocomposite; PL quenching; Ligand exchange;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boev, V. I.; Filonovich, S. A.; Vasilevskiy, M. I.; Silva, C. J.; Gomes, M. J. M.; Talapin, D. V.; Rogach, A. L. Physica B 2003, 338, 347.   DOI
2 Vasilevskiy, M. I.; Rolo, A. G.; Artemyev, M. V.; Filonovich, S. A.; Gomes, M. J. M.; Rakovich, Y. P. Phys. Status Solidi B 2001, 224, 599.   DOI   ScienceOn
3 Micic, O. I.; Ahrenkiel, S. P.; Nozik, A. J. Appl. Phys. Lett. 2001, 78, 4022.   DOI   ScienceOn
4 Lazarenkova, O. L.; Banlandin, A. A. J. Appl. Phys. 2001, 89, 5509.   DOI   ScienceOn
5 Koole, R.; Liljeroth, P.; Donega, C. M.; Vanmaekelbergh, D.; Meijerink, A. J. Am. Chem. Soc. 2006, 128, 10436.   DOI   ScienceOn
6 Koole, R.; Luigjes, B.; Tachiya, M.; Pool, R.; Vlugt, T. J. H.; de Mello Donega, C.; Meijerink, A.; Vanmaekelbergh, D. J. Phys. Chem. C 2007, 111, 11208.   DOI   ScienceOn
7 Rogach, A. L. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications; Springer Wien New York: Wien, 2008; p 277-310.
8 Wuister, S. F.; Houselt, A. V.; Donega, C. D. M.; Vanmaekelbergh, D.; Meijerink, A. Angew. Chem. 2004, 116, 3091.   DOI   ScienceOn
9 Wuister, S.; Donega, C. D. M.; Meijerink, A. J. Am. Chem. Soc. 2004, 126, 10397.   DOI   ScienceOn
10 Puzder, A.; Williamson, A. J.; Gygi, F.; Galli, G. Phys. Rev. Lett. 2004, 92, 217401.   DOI
11 Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389.   DOI   ScienceOn
12 Leatherdale, C. A.; Kagan, C. R.; Morgan, N. Y.; Empedocles, S. A.; Kastner, M. A.; Bawendi, M. G. Chem. Rev. B 2000, 62, 2669.
13 Gagneux, A. C.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. J. Am. Chem. Soc. 2010, 132, 18147.   DOI   ScienceOn
14 Li, C.; Ando, M.; Enomoto, H.; Murase, N. J. Phys. Chem. C 2008, 112, 20190.   DOI   ScienceOn
15 Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Adv. Mater. 2008, 20, 4068.   DOI   ScienceOn
16 Lafaurie, A.; Azema, N.; Ferry, L.; Cuesta-L, J. Powder Technol. 2009, 192, 92.   DOI   ScienceOn
17 Landes, C.; Burda, C.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 2981.   DOI   ScienceOn
18 Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9869.   DOI   ScienceOn
19 Sharma, S. N.; Shrma, H.; Singh, G.; Shivaprasad, S. M. Mater. Chem. Phys. 2008, 110, 471.   DOI   ScienceOn
20 Landes, C. F.; Braun, M.; El- Sayed, M. A. J. Phys. Chem. B 2001, 105, 10554.   DOI   ScienceOn
21 Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic, O.; Nozik, A. J. J. Phys. Chem B 2005, 109, 2625.   DOI   ScienceOn
22 Darugar, Q.; Landes, C.; Link, S.; Schill, A.; El-Sayed, M. A. Chem. Phys. Lett. 2003, 373, 284-291.   DOI
23 McCafferty, E. Introduction to Corrosion Science; Springer: New York, 2010; p 364.
24 Xu, S.; Klama, F.; Ueckermann, H.; Hoogewerff, J.; Clayden, N.; Nann,T. Sci. Adv. Mater. 2009, 1, 125.   DOI
25 Frisch, M. J.; Gaussian03; Gaussian, Inc.: Wallingford, CT, 2005.
26 Raghavachari, K.; Fu, Q.; Chen, G.; Li, L.; Li, C. H.; Law, D. C.; Hicks, R. F. J. Am. Chem. Soc. 2002, 124, 15119.   DOI   ScienceOn
27 Filonovich, S. A.; Rakovich, Y. P.; Vasilevskiy, M. I.; Artemyev, M. V.; Talapin, D. V.; Logach, A. L.; Rolo, A. G.; Gomes, M. J. M. Monatsh. Chem. 2002, 133, 909.   DOI   ScienceOn
28 Ishii, S.; Ueji, R.; Nakanishi, S.; Yoshida, Y.; Nagata, H.; Itoh, T.; Ishikawa, M.; Biju, V. J. Photochem. Photobio. A 2006, 183, 285.   DOI   ScienceOn
29 Muller, M. G.; Georgakoudi, I.; Zhang, Q.; Wu, J.; Feld, M. S. Appl. Opt. 2001, 40, 4633.   DOI
30 Mcguire, J. A.; Joo, J.; Pietryga, R. M.; Schaller, R. D.; Klimov, V. I. Acc. Chem. Res. 2008, 41, 1810.   DOI   ScienceOn
31 Dai, Q.; Duty, C. E.; Hu, M. Z. Small 2010, 6, 1577.   DOI   ScienceOn
32 Su, H.; Xu, H.; Gao, S.; Dixon, J. D.; Aguilar, Z. P.; Wang, A. Y.; Xu, J.; Wang, J. Nanoscale Res. Lett. 2010, 5, 625.   DOI   ScienceOn
33 Xie, R.; Battaglia, D.; Peng, X. J. Am. Chem. Soc. 2007, 129, 15432.   DOI   ScienceOn
34 Battaglia, D.; Peng, X. Nano Lett. 2002, 2, 1027.   DOI   ScienceOn
35 Li, L.; Protière.; Reiss, P. Chem. Mater. 2008, 20, 2621.   DOI   ScienceOn
36 Baek, Jinyoung.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Angew. Chem. Int. Ed. 2011, 50, 627.   DOI   ScienceOn
37 Li, L.; Reiss, P. J. Am. Chem. Soc. 2008, 130, 11588.   DOI   ScienceOn
38 Xi, S.; Ziegler, J.; Nann, T. J. Mater. Chem. 2008, 18, 2653.   DOI   ScienceOn
39 Wang, X.; Ren, X.; Kahen, K.; Hahn, E. A.; Rajeswaran, M.; Zacher-M, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krass, T. D. Nature 2009, 459, 686.   DOI   ScienceOn
40 Nie, S.; Smith, A. M. Nat. Biotechnol. 2009, 27, 732.   DOI   ScienceOn
41 Schlotter, S.; Schmidt, R.; Schneider, J. Apll. Phys. A 1997, 64, 417.   DOI   ScienceOn
42 Narukawa, Y. White-light LEDs. Opt. Photonics News 2004, 15(4), 24.   DOI
43 Schubert, E. F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: New York, 2006.
44 Norris, A. W.; Bahadur, M.; Yoshitake, M. Proc. of SPIE. 2005, 5941, 594115-1.
45 Choi, J. K.; Lee, D.-H.; Rhee, S. K.; Jeong, H. D. J. Phys. Chem. C 2010, 114, 14233.   DOI   ScienceOn
46 Schreuder, A. M.; Gosnell, D. J.; Smith, J. N.; Warnement, R. M.; Weiss, M. S.; Rosenthal, J. S. J. Mater. Chem. 2008, 18, 970.   DOI   ScienceOn
47 Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters; CRC Press, Inc: Florida, 1990.