• Title/Summary/Keyword: ultrasound echo

Search Result 85, Processing Time 0.022 seconds

Development of Echo PIV Using Ultrasound Contrast Agent (초음파 조영제를 애용한 Echo PIV 기법의 개발)

  • Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1528-1534
    • /
    • 2004
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow result of echo PIV showed good agreement with both optical PIV measurements and the known analytic solution based on a volume flow measurement.

Echo-PIV: in vivo Flow Measurement Technique (에코 PIV: in vivo 유동 측정기법)

  • kim Hyoung-Bum;Hertzberg Jean;Shandas Robin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) method has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window of offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow and pulsatile flow showed good agreement with both optical PIV measurements and the known analytic solution. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

  • PDF

An Efficient Focusing Method for High Resolution Ultrasound Imaging

  • Kim Kang-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • This paper proposes an efficient array beamforming method using spatial matched filtering for ultrasound imaging. In the proposed method, ultrasound waves are transmitted from an array subaperture with fixed transmit focus as in conventional array imaging. At receive, radio frequency (RF) echo signals from each receive channel are passed through a spatial matched filter that is constructed based on the system transmit-receive spatial impulse response. The filtered echo signals are then summed. The filter remaps and spatially registers the acoustic energy from each element so that the pulse-echo impulse response of the summed output is focused with acceptably low side lobes. Analytical beam pattern analysis and simulation results using a linear array show that the proposed spatial filtering method can provide more improved spatial resolution and contrast-to-noise ratio (CNR) compared with conventional dynamic receive focusing (DRF) method by implementing two-way dynamically focused beam pattern throughout the field.

Ultrasound Image Enhancement Based on Automatic Time Gain Compensation and Dynamic Range Control

  • Lee, Duh-Goon;Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.294-299
    • /
    • 2007
  • For efficient and accurate diagnosis of ultrasound images, appropriate time gain compensation(TGC) and dynamic range(DR) control of ultrasound echo signals are important. TGC is used for compensating the attenuation of ultrasound echo signals along the depth, and DR controls the image contrast. In recent ultrasound systems, these two factors are automatically set by a system and/or manually adjusted by an operator to obtain the desired image quality on the screen. In this paper, we propose an algorithm to find the optimized parameter values far TGC and DR automatically. In TGC optimization, we determine the degree of attenuation compensation along the depth by dividing an image into vertical strips and reliably estimating the attenuation characteristic of ultrasound signals. For DR optimization, we define a novel cost function by properly using the characteristics of ultrasound images. We obtain experimental results by applying the proposed algorithm to a real ultrasound(US) imaging system. The results verify that the proposed algorithm automatically sets values of TGC and DR in real-time such that the subjective quality of the enhanced ultrasound images may be sufficiently high for efficient and accurate diagnosis.

Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application (휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성)

  • Kang, Dong Heon;Chae, Mi Na;Hong, Se Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

An Echo Processor for Medical Ultrasound Imaging Using a GPU with Massively Parallel Processing Architecture (병렬 처리 구조의 GPU를 이용한 의료 초음파 영상용 에코 신호 처리기)

  • Seo, Sin-Hyeok;Sohn, Hak-Yeol;Song, Tai-Kyong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.871-872
    • /
    • 2008
  • The method and results of the software implementation of a echo processor for medical ultrasound imaging using a GPU (NVIDIA G80) is presented. The echo signal processing functions are modified in a SIMD manner suitable for the GPU's massively parallel processing architecture so that the GPU's 128 ALUs are utilized nearly 100%. The preliminary result for a frame of image composed of 128 scan lines, each having 10240 16-bit samples, shows that the echo processor can be inplemented at a high rate of 30 frames per second when implemented in C, which is close to the optimized assembly codes running on the TI's TMS320C6416 DSP.

  • PDF

Split-spectrum Processing for Improved Flaw Detectability by Ultrasound System ("Split-Spectrum Processing"을 사용(使用)해서 (결정립(結晶粒) 크기에 따른) 초음파(超音波) 결함판독(缺陷判讀) 개선(改善))

  • Koo, Kil-Mo;Shim, Chul-Moo;Ahn, Byeong-Wan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 1988
  • A split-spectrum processing technique for an ultrasonic flaw detection system has been developed, which improves the flaw-to-grain echo ratio in large-grained materials. The enhancement is achieved by partitioning a wide-band received spectrum to obtain frequency shifted bands, which are then processed to suppress the grain echoes with respect to the flaw echo, using a novel signal minimization algorithm. A technique for suppression of grain echoes has also been devised which takes advantage of the fact that the grain echo amplitude changes with the frequency of the incident ultrasound whereas the flaw echo amplitude does not. The combination of this technique and the new flaw detection system greatly improve the capabilities of ultrasonic evaluation of large grain materials.

  • PDF

Ultrasound Backscattering from Erythrocyte Aggregation of Human, Horse and Rat Blood under Rotational Flow in a Cylindrical Chamber

  • Nam, Kweon-Ho;Paeng, Dong-Guk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.159-165
    • /
    • 2006
  • Human, horse and rat bloods in a cylindrical chamber where flow was controlled by a stirring magnet were used for studying red blood cell aggregation. Ultrasound backscattered powers from blood were obtained from the backscattered signals measured by a 5 MHz focused transducer in a pulse-echo setup. The experimental results showed the differences in red blood cell (RBC) aggregation tendency among the three mammalian species with an order of horse > human > rat. The ultrasound backscattered power decreased with stirring speed in human and horse blood, but no variations were observed in rat blood. Sudden flow stoppage led to the slow increase of the backscattered power for human and horse blood. There was no self-aggregation tendency in rat blood. The enveloped echo images showed the spatial and temporal variations of RBC aggregations in the cylindrical chamber. These observations from the different mammalian species may give a better understanding of the mechanism of RBC aggregation.

Automatic optimization for time gain compensation and dynamic range control in ultrasound diagnostic systems (초음파 진단 기기에서의 시간 이득 보상과 다이나믹 범위 조절을 위한 자동 최적화 알고리즘)

  • Lee, Duhg-Oon;Kim, Yong-Sun;Ra, Jong-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.399-402
    • /
    • 2005
  • For efficient and accurate diagnosis of ultrasound images, the time gain compensation (TGC) and dynamic range (DR) control of the ultrasound echo signal are important. TGC is for compensating the attenuation of the ultrasound echo signal along the depth, and DR is used to control the image contrast. In this paper, we propose an algorithm for finding the optimized values of TGC and DR automatically. For TGC, the degree of compensation is determined along the depth based on the effective attenuation estimation of ultrasound signal. For DR optimization, we introduce a novel cost function on the basis of the characteristics of ultrasound image, which provides the minimum value at the optimal DR. Experiments have been performed by applying the proposed algorithm to a real US imaging system. The results show that the algorithm automatically can determine the values of TGC and DR in realtime so that the subjective quality of the corresponding US image may be good enough for diagnosis.

  • PDF