• 제목/요약/키워드: ultrasonic-wave

검색결과 1,020건 처리시간 0.025초

초음파자극기의 안전성 및 성능평가를 위한 표준시험방법 연구 (The Study on the Standard of Test Method for Estimation of Safety and Performance of Ultrasonic Stimulator for Medical Use)

  • 박수강;남기일;문인혁;차치훈;박기정
    • 재활복지공학회논문지
    • /
    • 제4권1호
    • /
    • pp.15-21
    • /
    • 2010
  • 초음파자극기의 오동작이나 부작용에 대한 예방으로 안전성 확보와 품질 향상이 필요하며 이를 위한 시판전의 시험검사나 시판후의 수거검사시에 안전성 및 성능평가를 위한 표준시험방법 이 필요하다. 본 논문에서는 초음파자극기에 대한 전기적 안전성 평가를 위한 필수시험과 성능평가를 위한 표준시험방법을 연구하였다.

초음파를 이용한 페라이트 분말의 결정화 (Crystallization of Ferrite Powder Using Ultrasonic Wave)

  • 신현창;오재희;이재춘;최승철
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.181-185
    • /
    • 2000
  • A new technique capable of accelerating the crystallization of ferrite powder at low temperature is developed. Effects of the ultrasonic waves on the crystallization were studied for ferrite powders prepared using the co-precipitation method. The crystallization of the ferrite powders exposed to the ultrasonic waves were characterized by the XRD. The amorphous ferrite powders prepared using the co-precipitation method were crystallized as a result of the exposure to the ultrasonic waves for 5h and the crystallization of the ferrite powders became more enhanced in proportion to the time exposed. The ferrite powder exposed to the ultrasonic waves for 25h had higher crystallinity a larger specific surface area than the ferrite powder calcined at 500$^{\circ}C$ for 2h.

  • PDF

초음파를 이용한 카올린 점토의 계수 및 감쇠 특성 (Modulus and Damping Properties of Kaolinite Using Ultrasonic Testing)

  • 민덕기
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.17-24
    • /
    • 2002
  • 본 연구에서는 초음파실험을 통하여 카올린 점토 시료의 초음파 전파 속도와 감쇠특성을 조사하였다. 슬러리 압밀 방법을 이용하여 이산구조와 면모구조를 갖는 두 종류의 카올린 점토를 인공적으로 제작하였다. 초음파를 이용하여 각 구조를 가진 점토의 압축파 속도 및 감쇠 거동을 측정하였다. 측정시 가진 주파수, 시료 길이, 측정 방향 등을 변화시키며 그에 대한 영향을 조사하였다. 실험 결과 전파속도는 같은 압축 응력 조건에서 제작된 본 시료의 경우 미세구조의 영향이 크지 않았으나 감쇠 특성은 미세구조의 영향이 큰 것으로 나타났다.

초음파를 이용한 마멸표면 평가 (Ultrasonic Evaluation of Worn Surface)

  • 안효석;김두인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.233-239
    • /
    • 1999
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

  • PDF

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • 비파괴검사학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

기체온도 측정을 위한 초음파 계측에 관한 연구 (A Study on Ultrasonic Technique for Measuring Gas Temperature)

  • 윤천한;최영;전흥신
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

압축강도 평가를 위한 지능형 응력예측기 구축 (Construction of the Intelligence Stress Predictor for Compression Strength Evaluation)

  • 박원규;우영환;이종구;윤인식
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

박형 초음파 모터의 최적설계 및 구동 드라이버 개발 (Optimal Design of Thin Type Ultrasonic Motor and Development of Driver)

  • 정성수;전호익;박태곤
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.976-981
    • /
    • 2009
  • This paper proposed optimal design and microcontroller driver for driving the thin-type ultrasonic motor. To find the optimal size of the stator, motions of the motor were simulated using ATILA by changing length, width and thickness of the ceramics. Two sinusoidal waves which have 90 degree phase difference were needed for driving the thin-type motor. The thin-type ultrasonic motor driver was composed of microcontroller(Atmega128), push-pull inverter, encoder and AD-converter. Microcontroller generates four square waves which have variable frequency and 25[%] duty ratio in $20{\sim}150$[kHz]. The output signals of microcontroller were converted to sine wave and cosine wave by push-pull inverter and were applied to the thin-type ultrasonic motor. The encoder and AD-converter were used for maintaining speed of the thin-type ultrasonic motor. The AD-converter controlled DC voltage of inverter in accordance with output signal of encoder. Using the driver, characteristics of the motor as speed and torque were measured.

초음파를 이용한 마멸표면 평가 (Ultrasonic Evaluation of Worn Surface)

  • 안효석;김두인
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.351-356
    • /
    • 2000
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

초음파를 이용한 감자의 내부결함검사 (Ultrasonic Inspection of Internal Defects of Potatoes)

  • 김인훈;정규홍;장경영;서륜;김만수
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.82-88
    • /
    • 2003
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. Recently, the ultrasonic wave has been considered as a solution fur this problem, and an ultrasonic system was constructed for the ultrasonic NDE of fruits and vegetables in our previous work. In this paper, the practical applicability of our ultrasonic system is tested fur the inspection of internal defects (central cavity) in Atlantic potato. Sound speed and RMS of transmitted ultrasonic wave signal were measured and classification algorithm using 2 dimensional stochastic analysis. was presented. Experimental results showed greater value of sound speed and RMS (root mean square) of transmitted signal in normal samples than in abnormal samples with cavity. Also a stochastic method to distinguish normal and abnormal showed fault detection rate less than 5%.