• 제목/요약/키워드: ultrasonic system

검색결과 1,509건 처리시간 0.026초

초음파 에너지로 제조된 유화연료의 수액이 분무 및 화염에 미치는 영향 (Effect of Water on Continuos Spray and Flame in Emulsified Fuel made by Ultrasonic Energy)

  • 이승진;류정인
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2005
  • To investigate spray and combustion of emulsified fuel of W/O type, we mixed water with light oil by using ultrasonic energy adding system. We measured the SMD of sprayed droplet to find atomization characteristics of emulsified fuel with using the Malvern 2600D system. Major parameters are the weight ratio of water($0{\sim}30%$ by 10%) in emulsified fuel injection pressure(lobar), and the measurement distance($10{\sim}100mm$ by 10mm). Combustion visualizing system is made up commonly used boiler system and digital camera 1/500s to investigate combustion phenomena. As a result, the more water contents increased, the more SMD increased. The water particle of emulsified fuel made short flame in continuos spray combustion phenomena because of micro explosion.

  • PDF

A Study on a 3D Free-Hand using Ultrasonic Position System

  • Shin Low-Kok;Park Soo-Hong
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.451-454
    • /
    • 2006
  • Ultrasonic Positioning System (UPS) is an absolute positioning system using ultrasonic waves and has better performance in low price than the other absolute positioning systems. UPS can be further used as pseudo-satellites in the place where GPS is not available. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The process includes the design and testing of VPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

  • PDF

최적의 스마트 홈 시큐리티 모니터링 시스템 설계 및 구현 (Design and Implementation of Optimal Smart Home Security Monitoring System)

  • 이형로;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.197-202
    • /
    • 2016
  • 본 논문에서는 최적의 스마트 홈 시큐리티 모니터링 시스템을 제안한다. 제안하는 최적의 스마트 홈 시큐리티 시스템을 위해 세 종류의 초음파 센서를 이용하여 신뢰도 높은 데이터를 얻기 위한 실험 하였으며, 메인 프로세서로는 오픈소스 하드웨어 플랫폼인 라즈베리 파이3를 이용하여 스마트 홈 시큐리티 시스템을 설계하였다. 또한, 실험을 통해 최적의 위치에 두 개의 초음파 센서를 위치함으로써 기존의 홈 시큐리티 시스템에 비해 적은 센서 양으로 최적의 효율성을 검증하였다. 두 개의 초음파 센서를 이용하여 침입자의 침입 여부를 효율적이고 신뢰도 높게 판단 할 수 있었으며, 침입자의 영상을 촬영하기 위해 카메라 하단에 서보 모터를 연결 하여 침입자의 위치에 맞게 조정하여 촬영할 수 있도록 하였다. 또한, 웹 서버를 이용하여 해당 기록된 영상과 두 개의 초음파 센서 데이터를 저장하고 사용자는 모든 원격지에서 모니터링 할 수 있도록 웹 페이지를 제공 하였다.

초음파와 무선 통신파 기반 위치 인식 시스템의 위치 오차와 민감도 평가 (Evaluation of Position Error and Sensitivity for Ultrasonic Wave and Radio Frequency Based Localization System)

  • 신동헌;이양재
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.183-189
    • /
    • 2010
  • 위치인식시스템은 이동로봇이 실내에서 주행하는데 가장 중요한 기술의 하나인데 본 논문에서 연구된 시스템은 GPS 시스템과 유사하게 3 개이상의 위성 비이컨에서 초음파와 무선통신파를 발사하고 로봇에 부착된 리시버는 초음파와 무선통신파의 수신되는 시간차를 계산하여 각 비컨까지의 거리를 구하고 또한 이로부터 로봇의 위치를 계산한다. 일반적으로 거리정보는 초음파의 한 파장 이내의 오차를 가지게 되는데 본 논문에서는 이에 따른 위치오차를 테일러 확장과 SVD(Singular Value Decomposition)를 이용하여 구하였다. 또한 본 논문에서는 거리오차에 따른 위치오차의 정확도를 잴 수 있는 값으로 민감도를 제시하였다.

PZT를 이용한 다자유도 초음파 모터 개발 (Development of Multi-DOF Ultrasonic Motor Using PZT)

  • 손영완;다케무라 겐지로;박신석
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.53-62
    • /
    • 2010
  • This study introduces about development of multi-DOF ultrasonic motor that are composed of a bar-shaped stator and a spherical rotor. The ultrasonic motor is a motor which is operated by vibrations over frequency of 20kHz. The multi-DOF ultrasonic motor will be developed by expanding the basic theory of existing 1-DOF ultrasonic motor. It can generate 3-DOF rotation of the rotor around perpendicular axes using 3 vibration modes of stator. By using finite element methods, the optimal dimension of stator is decided and made the components of stator. When we apply the multi-DOF ultrasonic motor composed of rotor and stator to the driving test system, it will be checked whether the motor can be driven at the direction of 3-DOF or not. And it is proposed how the simulation of square bar shaped multi-DOF ultrasonic motor is accomplished.

원자력발전소 배관 내부 매질이 초음파검사에 미치는 영향 평가 (Evaluation on the Effect of Ultrasonic Testing due to Internal Medium of Pipe in Nuclear Power Plant)

  • 윤병식;김용식;양승한
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.25-30
    • /
    • 2013
  • The periodic inspection of piping and pressure vessels welds in nuclear power plant has to provide reliable result related to weld flaws, such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these data. Specially, the amplitude of flaw response is used as basic parameter for flaw sizing and it may cause some deviation in length sizing result. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by the requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error. Therefore, the objective of this study is to compare and evaluate the ultrasonic amplitude difference between air filled and water filled pipe in nuclear power plant. Additionally, the accuracy of flaw sizing is estimated by comparing both conditions.

국소적 초음파 가진이 난류경계층에 미치는 영향 (Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer)

  • 박영수;성형진
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.78-89
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient (C$_{f}$) decreases 60$\%$and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall. In the vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

  • Choi, Myoung Hwan;Bae, Moo Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1418-1425
    • /
    • 2014
  • In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic probe element is rotated mechanically and the beam steering is achieved mechanically. In the spatial compounding, target position is computed using the value of the rotation axis and the transducer array angular position. However, in the process of the rotation mechanism construction and the control system there arises the inevitable uncertainties in these values. These geometric parameter errors result in the target position error, and the consequence is a blurry compounded image. In order to reduce these target position errors, we present a spatial compounding scheme where error correcting transformation matrices are computed and applied to the raw images before spatial compounding to reduce the blurriness in the compounded image. The proposed scheme is illustrated using phantom and live scan images of human knee, and it is shown that the blurriness is effectively reduced.

신경회로망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 분류 및 평가에 관한 연구 (A Study on the Defect Classification and Evaluation in Weld Zone of Austenitic Stainless Steel 304 Using Neural Network)

  • 이원;윤인식
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.149-159
    • /
    • 1998
  • The importance of soundness and safety evaluation in weld zone using by the ultrasonic wave has been recently increased rapidly because of the collapses of huge structures and safety accidents. Especially, the ultrasonic method that has been often used for a major non-destructive testing(NDT) technique in many engineering fields plays an important role as a volume test method. Hence, the defecting any defects of weld Bone in austenitic stainless steel type 304 using by ultrasonic wave and neural network is explored in this paper. In order to detect defects, a distance amplitude curve on standard scan sensitivity and preliminary scan sensitivity represented of the relation between ultrasonic probe, instrument, and materials was drawn based on a quantitative standard. Also, a total of 93% of defect types by testing 30 defect patterns after organizing neural network system, which is learned with an accuracy of 99%, based on ultrasonic evaluation is distinguished in order to classify defects such as holes or notches in experimental results. Thus, the proposed ultrasonic wave and neural network is useful for defect detection and Ultrasonic Non-Destructive Evaluation(UNDE) of weld zone in austenitic stainless steel 304.

  • PDF

초음파 용접기 인버터의 공진 추종 방법에 관한 연구 (A Study on Resonance Tracking Method of Ultrasonic Welding Machine Inverter)

  • 문정훈;박성준;임상길;김동옥
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.481-490
    • /
    • 2021
  • In the ultrasonic welding machine, when the load fluctuates, the L and C of the piezo element in the oscillation part change. As a result, the resonant frequency is changed, so it is necessary to match the operating frequency of the ultrasonic welding machine to the new resonant frequency. That is, in order to maximize the output of the oscillation unit of the ultrasonic welding machine, it is inevitable to follow the resonance frequency. Accordingly, many methods for following the resonant frequency are being actively studied. In addition, in order to check the effect of external inductance on the operation of the ultrasonic welding machine, The equivalent circuit of the piezo element was analyzed by including the external inductance for resonance in the equivalent circuit of the piezo element, and the method of selecting an appropriate inductance was described. In this paper, we propose a new system that allows the switching frequency of the inverter to tracking the resonance frequency even if the resonance frequency is changed due to the load of the ultrasonic welding machine.