• Title/Summary/Keyword: ultrasonic system

Search Result 1,509, Processing Time 0.027 seconds

Perception of small-obstacles using ultrasonic sensors and its avoidance method in robot (초음파센서를 이용한 로봇의 소형장애물 감지 및 회피방법연구)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle, a small sphere, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, a robot's small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid small-obstacles. The system was installed on the upper part of the mobile robot with the slope angles between $40.7^{\circ}$ and $23.3^{\circ}$ to a horizontal line and the dynamic characteristic test of the robot was performed. As the result, it was confirmed that the mobile robot with the system could avoid small-obstacles in indoor environment safely.

Complete Modeling of an Ultrasonic NDE Measurement System - An Electroacoustic Measurement Model

  • Dang, Changjiu;Lester W. Schmerr, Jr.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.1-21
    • /
    • 2001
  • It will be shown how models can simulate all the elements of an ultrasonic NDE measurement system, including the pulser/receiver, cabling, transducer(s), and the acoustic/elastic waves fields. When combined, these models form what is called the electroacoustic measurement model. It will be demonstrated how this electroacoustic measurement model can be used to conduct parametric transducer and system studies and how the model can form the basis for experimentally characterizing all the elements of the ultrasonic measurement system, using purely electrical measurements.

  • PDF

Indoor Positioning System Using Ultrasonic and RF (초음파와 RF를 이용한 실내 측위 시스템)

  • Zho, Back-doo;Kwon, Sung-oh;Cheon, Seong-eun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.413-423
    • /
    • 2017
  • In this paper, we propose a ultrasonic and RF-based indoor localization system. In previous work, various systems were proposed for indoor localization, but they have limitation in applicability due to time-synchronization, complexity, or accuracy. To overcome such problems, an indoor localization system with ultrasonic and RF is proposed. A transmitting system is composed of a pair of ultrasonic and RF transmitters and the receiving system is composed of multiple ultrasonic receivers and one RF receiver. The theoretical performance limitation is also analyzed. To verify localization performance, we have implemented a receiving systems and a transmitting system using Arduino modules. Experiments were performed in $2m{\times}2m{\times}2m$ space and the localization errors had a mean of 6.1cm and a standard deviation of 1.6cm.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park, Young-Soo;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

A Study on the Fluid Flew with Ultrasonic Forcing by PIV Measurement (초음파가 가진된 유체유동의 PIV계측에 의한 연구)

  • 주은선;이영호;나우정;정진도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1281-1290
    • /
    • 2001
  • A study on the fluid flow with ultrasonic forcing is carried out to obtain data for the turbulence enhancement. A large water tank is made of the transparent acrylic plates and a horizontal flow field is given by setting two acrylic tubes to face mutually on a horizontal line. A 2-dimensional PlV system which is composed of a continuous-output 4W Argon-ion laser, a high-speed video camera, a PC based by an image grabber and a high resolution monitor is used to investigate characteristics of the complex turbulence flow field. And a 2MHz ultrasonic transducer is used fur ultrasonic vibration forcing. Some experiments are carried out at Reynolds numbers of 2,000 and 4,000 and at 7 angles of ultrasonic incidence. In results, the flew velocity vector distribution, kinetic energy and turbulence intensity in both cases of with and without ultrasonic forcing are examined, compared and discussed by using PIV measurement. It is clarified that the ultrasonic forcing into flow field is valid to obtain the turbulence enhancement.

  • PDF

Characteristics of Ultrasonic Propagation of the fruit and Vegetables

  • Lee, Y.H.;Kim, M.S.;Cho, Y.K.;Cho, D.S.l
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.344-353
    • /
    • 1996
  • A fundamental study was conducted to obtain the basic data involved in nondestructive quality evaluation of the fruit and vegetables. An experimental equipment for ultrasonic propagation characteristics of the fruit and vegetables such as radish , carrot , potato, and apple was set up and also power spectrum analysis system of an ultrasonic wave through the fruit and vegetables was set up. The velocity and attenuation of ultrasonic wave through the tissue specimens from the fruit and vegetables were measured and analyzed. The elastic modulus and density by the mechanical method currently used were compared with those using by ultrasonic method. The ultrasonic tranit time was almost linearly increased with the length of the specimens and attenuation of ultrasonic was mainly affected by the internal flbrous structure of the products. The regression equation was derived from the highly correlated experimental variables.

  • PDF

Deinking of White Ledger with Ultrasonic Wave : Laboratory Scale Trial

  • Won, Jong Myoung
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • Ultrasonic deinkings of white ledger were carried out to confirm whether the ink removal efficiency and pulp qualities can be improved by the ultrasonic deinking. The effects of conventional pulping and ultrasonic treatment of white ledger on the ink particle size distribution and ink removal coefficient were compared. The physical properties of paper, energy consumption and effluent qualities were measured. The ultrasonic treatment of white ledger resulted in the ink particle size distribution suitable for flotation. The ink removal efficiency, brightness, breaking length and effluent quality were improved by the ultrasonic deinking. It is expected that the competitiveness of ultrasonic deinking system can be improved by the optimization of treatment condition.

  • PDF

One-wave Step Horn Design for Ultrasonic Machining for Metal Welding (금속 용착을 위한 초음파 가공용 한파장 스텝 혼의 설계)

  • Back, Si-Young;Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4735-4741
    • /
    • 2010
  • The ultrasonic metal welding is highly used in extensive field due to the possibility for welding of various materials such as new materials, plated structures and etc, and its welding conditions has been diversify. In this paper, one-wavelength tool horn of step type designed for ultrasonic metal welding of dissimilar metal sheets has performed by FEM analysis. FEM analysis is applied to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape. And the optimal design of one-wavelength step horn is confirmed experimentally using natural frequency analysis system.

Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Yang, Woo-Seok;Lee, Sung-Q
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.

Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Lee, Sung-Q
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF