DOI QR코드

DOI QR Code

Indoor Positioning System Using Ultrasonic and RF

초음파와 RF를 이용한 실내 측위 시스템

  • Received : 2016.10.06
  • Accepted : 2017.01.24
  • Published : 2017.02.28

Abstract

In this paper, we propose a ultrasonic and RF-based indoor localization system. In previous work, various systems were proposed for indoor localization, but they have limitation in applicability due to time-synchronization, complexity, or accuracy. To overcome such problems, an indoor localization system with ultrasonic and RF is proposed. A transmitting system is composed of a pair of ultrasonic and RF transmitters and the receiving system is composed of multiple ultrasonic receivers and one RF receiver. The theoretical performance limitation is also analyzed. To verify localization performance, we have implemented a receiving systems and a transmitting system using Arduino modules. Experiments were performed in $2m{\times}2m{\times}2m$ space and the localization errors had a mean of 6.1cm and a standard deviation of 1.6cm.

본 논문은 실내에서 위치를 측정하기 위해 초음파와 RF 기반의 실내 측위 시스템을 제안한다. 기존의 실내 측위 방안은 시간 동기화, 시스템의 복잡도, 측위의 정확성 등의 문제가 있다. 이러한 문제를 해결하기 위해 초음파와 무선주파수(RF)를 이용한 송수신 시스템을 제안한다. 송신시스템은 한 쌍의 초음파 송신기와 RF 송신기로 구성하고, 수신시스템은 복수의 초음파 수신기들과 하나의 RF 수신기로 구성한다. 또한, 제안된 시스템이 가질 수 있는 성능의 한계를 수학적으로 분석하였다. 제안된 시스템은 시뮬레이션뿐만 아니라 아두이노 모듈을 이용하여 실제 시스템을 제작하여 측위 성능을 평가하였다. 실내 공간 $2m{\times}2m{\times}2m$에서 25개 지점의 위치를 측정한 결과, 평균 6.1cm, 표준편차 1.6cm의 성능을 보였다.

Keywords

References

  1. S. Nam, M. Park, K. Kim, and S. Kim, "A study on the regulations and market of location based service (LBS)," J. Internet Comput. and Serv. (JICS), vol. 15, no. 4, pp. 141-152, Aug. 2014. https://doi.org/10.7472/jksii.2014.15.4.141
  2. C. Jensen, H. Lu, and B. Yang, "Indoor - a new data management frontier," IEEE Data Eng. Bull., vol. 33, no. 2, pp. 12-17, Jun. 2010.
  3. B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global positioning system: Theory and Practice, 4th Ed., Springer-Verlag, 1997.
  4. J. Kim and D. Seo, "Effect of the log normal-Nakagami faded interferers on imperfect power-controlled DS / CDMA cellular system," J. KICS, vol. 24, no. 8, pp. 1163-1168, Aug. 1999.
  5. U.S. Government, Global Positioning System Standard Positioning Service Performance Standard(2008), Retrieved Sept., 27, 2016, from http://www.gps.gov.
  6. J. Y. Lee and D. M. Lee, "Indoor localization algorithm using smartphone sensors and probability of normal distribution in Wi-Fi environment," J. KICS, vol. 40, no. 9, pp. 1856-1864, Sept. 2010.
  7. G. Fischer, O. Klymenko, D. Martynenko, and H. Ludiger, "An impulse radio UWB transceiver with high‐precision TOA measurement unit," IEEE IPIN Int. Conf., pp. 1-8, Sept. 2010.
  8. C. Lee, Y. Chang, G. Park, J. Ryu, S. Jeong, S. Park, J. Park, H. Lee, K. Hong, and M. Lee, "Indoor positioning system based on incident angles of infrared emitters," IECON 30th Annu. Conf. IEEE, vol. 3, pp. 2218-2222, Nov. 2004.
  9. C. Medina, J. C. Segura, and A. De la Torre, "Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy," Sensors, vol. 13, no. 3, pp. 3501-3526, 2013. https://doi.org/10.3390/s130303501
  10. F. Seco, C. Plagemann, A. Jimenez, and W. Burgard, "Improving RFID-based indoor positioning accuracy using Gaussian processes," IEEE IPIN Int. Conf., pp. 1-8, Sept. 2010.
  11. C. Y. Choi and D. M. Lee, "Localization algorithm for moving objects based on maximum measurement value in WPAN," J. KICS, vol. 39, no. 5, pp. 407-412, May 2014.
  12. H. Ahn, T. Thuy, and Y. Lee, "Bluetooth beacon planing considering position estimation accuracy in small and isolated indoor environment," J. KICS, vol. 40, no. 7, pp. 1307-1312, Jul. 2015. https://doi.org/10.7840/kics.2015.40.7.1307
  13. H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Trans. Systems, Man, and Cybernetics, Part C (Appl. and Rev.), vol. 37, no. 6, pp. 1067-1080, 2007. https://doi.org/10.1109/TSMCC.2007.905750
  14. R. Mautz, "Indoor positioning technologies," Habilitation Thesis, Civil, Environmental and Geomatic Eng., ETH Zurich, Feb. 2012.
  15. S. Ravindra and S. Jagadeesha, "Time of arrival based localization in wireless sensor networks : a non-linear approach," SIPIJ, vol. 6, no. 1, Feb. 2015.
  16. G. Shen, R. Zetik, and R. S. Thoma, "Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment," in IEEE Positioning, Navig. and Commun., WPNC 2008, pp. 71-78, Mar. 2008.
  17. P. Rong and M. Sichitiu, "Angle of arrival localization for wireless sensor networks," in 3rd Annu. IEEE SECON, vol. 1, pp. 374-382, Sept. 2006.
  18. I. Guvenc, C. Chong, and F. Watanabe, "Analysis of a linear least-squares localization technique in LOS and NLOS environments," IEEE VTC Spring, pp. 1886-1890, Apr. 2007.
  19. W. Murphy and W. Hereman, "Determination of a position in three dimensions using trilateration and approximate distances," Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, MCS-95-07, 1995.
  20. S. Song, D. Ban, Y. Kim, and S. Kwon, "Analysis of linearization error of linear least square for indoor positioning," in Proc. KICS Int. Conf. Commun., pp. 1554-1555, Jun. 2015
  21. V. Filonenko, C. Cullen, and J. D. Carswell, "Indoor positioning for smartphones using asynchronous ultrasound trilateration," ISPRS Int. J. Geo-Information, vol. 2, no. 3, pp. 598-620, 2013. https://doi.org/10.3390/ijgi2030598
  22. K. Tong, X. Wang, A. Khabbazibasmenj, and A. Dounavis, "Optimum reference node deployment for TOA-based localization," IEEE Int. Conf. Commun. (ICC), pp. 3252- 3256, Jun. 2015.

Cited by

  1. 선박 및 해양플랜트 환경에서 작업자 위치 모니터링 시스템 개발을 위한 시스템엔지니어링 접근 방법 vol.16, pp.1, 2020, https://doi.org/10.14248/jkosse.2020.16.1.068