• Title/Summary/Keyword: ultrasonic surface wave

Search Result 190, Processing Time 0.027 seconds

A Study on the Wave Modes in Measurements of the Crack Depth of Concrete by Ultrasonic Waves (초음파에 의한 콘크리트의 균열깊이 측정에 있어서 음파모드에 관한 연구)

  • Han, E.K.;Lee, S.H.;Kim, J.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 1989
  • As the necessity of the safety diagnosis of the concrete structure, more reliable ultrasonic technique to qualify the concrete is required. In this study, the artificial surface crack depth is measured using several types of the ultrasonic probes. As results, the horizontal shear wave probe is most useful to determine the crack depth compared to the other probes. For the surface wave probe, the ultrasonic wave path is changed with the surface crack depth.

  • PDF

Experimental Verification on the Detectability of Surface Flaws at Fillet Weld Hills by Ultrasonic Method (초음파에 의한 필렛 용접힐부의 표면결함 검출능에 관한 실험적 검증)

  • 박익근;이철구
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2000
  • Ultrasonic nondestructive evaluation (UNDE) technique is commonly used for detecting inner defects in the materials. Recently, new methods are trying to apply for detecting surface and subsurface flaws using Rayleigh wave or creeping wave. These techniques, however, have following problems. Echo amplitude is remarkably affected by the surface conditions and discrimination of echo pattern is usually difficult because shear wave propagate in the material at the same time. We can apply surface SH-wave(which is horizontally polarized shear wave traveling along near surface layer) technique to detect surface flaws. In this paper, directivity, distance amplitude characteristics and detectability of surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface flaws at fillet weld hills of the 5 MHz and 2 MHz surface Sh-wave are experimentally investigated. As a result of the study, it was found out that these techniques are valuable for the detection of fatigue cracks at fillet weld heels which can not be detected by other ultrasonic techniques such as angle beam technique and which are inaccessible for non-destructive testings e.g. MT(magnetic particle testing) or PT(liquid penetrant testing).

  • PDF

A Study on the Application and Dispersion Characteristics Analysis of Surface SH-wave Mode (표면 SH파 모드의 분산특성 해석과 그 응용)

  • 이상용;박익근;윤종학;노승남;안형근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.61-65
    • /
    • 2001
  • A new flaw detection technique using by SH angle beam method has been discussed. The SH-wave is horizontally polarized shear wave and the surface SH wave has a characteristic of traveling along near surface layer. The surface SH wave technique is valuable for the detection of fatigue cracks at fillet weld heels which cannot be detected by other ultrasonic technique such as angle beam technique and The dispersion curves of it has simple characterization. In this work, using these beneficial chraterization, quality evaluation of spot weld with ultrasonic sound intensity of SH-wave passing through nugget area of spot weld are verified experimentally.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.233-239
    • /
    • 1999
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.351-356
    • /
    • 2000
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

An Experimental Study on the Propagation Characteristics of Ultrasonic Wave in Watermelon (수박에서의 초음파 전파 특성에 관한 실험적 연구)

  • 장경영;김만수;조한근
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.615-620
    • /
    • 1998
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. In recent, ultrasonic wave has been considered as a solution for this problem. It transmit well through most materials and can handle safely and easily. However, specially in a watermelon, it is known that general frequency band (higher than 20kHz) ultrasonic waves do not transmitted well due to severe attenuation. The objectives of this study were to find out the proper waveform and frequency of the ultrasonic waves that transmit well inside the watermelon, and to analyze the transmitted waveform in order to make clear the structure of wave propagation in watermelon. The result of several experiments showed that 2kHz shear wave was the most suitable for the detection of internal cavity in the watermelon. Also, it was found that the surface wave did not influence the directly transmitted bulk wave. These results could be a basis of application of ultrasonic wave on the evaluation of internal quality of the watermelon.

  • PDF

The Defect Detection and Evaluation of Austenitic Stainless Steel 304 Weld Zone using Ultrasonic Wave and Neuro (초음파와 신경망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 검출 및 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.64-73
    • /
    • 1998
  • This paper is concerned with defects detection and evaluation of heat affected zone (HAZ) in austenitic stainless steel type 304 by ultrasonic wave and neural network. In experiment, the reflected ultrasonic defect signals from artificial defects (side hole, vertical hole, notch) of HAZ appears as beam distance of prove-defect, distance of probe-surface, depth of defect-surface on CRT. For defect classification simulation, neural network system was organized using total results of ultrasonic experiment. The organized neural network system was learned with the accuracy of 99%. Also it could be classified with the accuracy of 80% in side hole, and 100% in vertical hole, 90% in notch about ultrasonic pattern recognition. Simulation results of neural network agree fairly well with results of ultrasonic experiment. Thus were think that the constructed system (ultrasonic wave - neural network) in this work is useful for defects dection and classification such as holes and notches in HAZ of austenitic stainless steel 304.

  • PDF

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

Nondestructive Evaluation for Degraded 2.25Cr-1Mo Steel though Surface SH-wave (표면SH파를 이용한 2.25Cr-1Mo강의 열화.손상 평가)

  • Kim, Hyun-Mook;Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kim, Chung-Soek
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.280-285
    • /
    • 2000
  • It is very important to evaluate the surface or subsurface microstructure because of their influences on mechanical properties of materials. Surface SH-wave which is horizontally polarized shear wave traveling along near surface and subsurface layer is an attractive technique for material evaluation. The destructive method is widely used for the estimation of material degradation but it has a great difficulty in preparing specimens from in-service industrial facilities. In this study, nondestructive evaluation for degraded structural materials used at high temperature though surface SH-wave method is discussed. 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $650^{\circ}$ were evaluated though ultrasonic nondestructive evaluation techniques investigating the change of sound velocity, attenuation coefficient and amplitude spectra. In addition, it has verified experimentally the frequency-dependence of attenuation coefficient though wavelet analysis method.

  • PDF

The effect of the ultrasonic wave on the texturisation of the silicon crystal-line solar cell (태양전지용 규소의 texture etching에 미치는 초음파의 영향)

  • 김정민;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.261-266
    • /
    • 2003
  • The presence of ultrasonic wave in the caustic etching process enhances the etching rate and results in finer and more homogeneous textured structure of the crystalline silicon surface. The silicon solar cell textured in the caustic solution at $60^{\circ}C$ with ultrasonic wave gives higher cell performance than the cell textured at $70^{\circ}C$ without ultrasonic wave. This result indicates a strong possibility of lowering the production cost of the silicon solar cell through saving the thermal budget or expensive chemical normally employed in the texturisation of the crystalline silicon.