• Title/Summary/Keyword: ultrasonic reflection

Search Result 156, Processing Time 0.028 seconds

Reflection Noise Rejection of Ultrasonic Sensor using Scheduling Firing Method (계획송신방법에 의한 초음파 반사노이즈 제거)

  • Jin, Tae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • In this paper, we proposed a new method which analyzes and eliminates errors occurring by multi-reflection of ultrasonic firing in mobile robot application. This new method allows ultrasonic sensors to fire at rates that are three times faster than those customary in conventional applications readings due to ultrasonic noise disturbance. It is possible them to collect and predict sensor data much faster than conventional methods. Furthermore, this method's capability allows mobile robot to navigate in a complex and unknown environment and to collaborate in the same environment with multiple mobile robot, even if their ultrasonic sensors operate. And it's usefulness to avoid moving obstacles by capability of rapid collecting data. Finally, we present experimental results that demonstrate the performances of the new proposed method by experiments in a multi-reflective environment.

Pipeline defect detection with depth identification using PZT array and time-reversal method

  • Yang Xu;Mingzhang Luo;Guofeng Du
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.253-266
    • /
    • 2023
  • The time-reversal method is employed to improve the ability of pipeline defect detection, and a new approach of identifying the pipeline defect depth is proposed in this research. When the L(0,2) mode ultrasonic guided wave excited through a lead zirconate titinate (PZT) transduce array propagates along the pipeline with a defect, it will interact with the defect and be partially converted to flexural F(n, m) modes and longitudinal L(0,1) mode. Using a receiving PZT array attached axisymmetrically around the pipeline, the L(0,2) reflection signal as well as the mode conversion signals at the defect are obtained. An appropriate rectangle window is used to intercept the L(0,2) reflection signal and the mode conversion signals from the obtained direct detection signals. The intercepted signals are time reversed and re-excited in the pipeline again, result in the guided wave energy focusing on the pipeline defect, the L(0,2) reflection and the L(0,1) mode conversion signals being enhanced to a higher level, especially for the small defect in the early crack stage. Besides the L(0,2) reflection signal, the L(0,1) mode conversion signal also contains useful pipeline defect information. It is possible to identify the pipeline defect depth by monitoring the variation trend of L(0,2) and L(0,1) reflection coefficients. The finite element method (FEM) simulation and experiment results are given in the paper, the enhancement of pipeline defect reflection signals by time-reversal method is obvious, and the way to identify pipeline defect depth is demonstrated to be effective.

Study on the ultrasonic attenuation and false indications of austenitic stainless sleet Steel weldment (스테인레스강(鋼) 용접부(熔接部)의 초음파감쇠(超音波減衰) 및 거짓신호(信號)에 관(關)한 연구(硏究))

  • Kang, Suk-Chull;Lee, Yun-Peel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.3 no.1
    • /
    • pp.19-25
    • /
    • 1983
  • Some studies have been made on the effects of the attenuation on the result of ultrasonic examination of austenitic stainless steel weldment and also on the cause of false indications. The differences in the amplitudes and the metal paths of the ultrasonic examinations have been measured experimentally, for two kinds of waves, one passed through only the parent material and the other one through the weldment. The effect of probe angles and frequency on the examination data have been investigated using the shear wave. It has been found that the false indications were caused by back reflection from the weld metal surface due to the characteristics of ultrasonic wave propagation. It has been confirmed that the probe of $2.25\;MHz\;and\;60^{\circ}$ is the best choice in the ultrasonic examination and that the correction of amplitude for attenuations is necessary.

  • PDF

Use of the Mass-Spying Lattice Model for Simulation of Ultrasonic Waves in Austenitic Welds

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.30-39
    • /
    • 2006
  • Feasibility is studied for an application of the mass-spring lattice model (MSLM), a numerical model previously developed for unidirectional composites, to the numerical simulation of ultrasonic inspection of austenitic welds modeled as transversely isotropic. Fundamental wave processes, such as propagation, reflection, refraction, and diffraction of ultrasonic waves in such an inspection are simulated using the MSLM. All numerical results show excellent agreement with the analytical results. Further, a simplified model of austenitic weld inspection has been successfully simulated using the MSLM. In conclusion, a great potential of the MSLM in numerically simulating ultrasonic inspections of austenitic welds has been manifested in this work, though significant further efforts will be required to develop a model with field practicality.

Localization and Classification of Target Surfaces using Two fairs of Ultrasonic Sensors (2쌍의 초음파센서를 이용한 측정면의 위치 측정 및 종류 분류 기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.747-752
    • /
    • 1998
  • Ultrasonic sensors have been widely used to recognize the working environment for a mobile robot. However, their intrinsic problems, such as specular reflection, wide beam angle, and slow propagation velocity, require an excessive number of sensors to be integrated for achieving the sensing goal. This paper proposes a new measurement scheme which uses only two sets of ultrasonic sensors to determine the location and the type of a target surface. By measuring the time difference between the returned signals from the target surface, which are generated by two transmitters with 1 ㎳ difference, it classifies the type and determines the size of the target surface. Since the proposed sensor system uses only two sets of ultrasonic sensors to recognize and localize the target surface, it significantly simplifies the sensing system and reduces the signal processing time so that the working environment can be recognized in real time.

  • PDF

A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System (초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

Angle Beam Ultrasonic Testing Models and Their Application to Identification and Sizing of Surface Breaking Vertical Cracks

  • Song, Sung-Jin;Kim, Hak-Joon;Jung, Hee-Jun;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.627-636
    • /
    • 2002
  • Identification and sizing of surface breaking vertical cracks using angle beam ultrasonic testing in practical situation quite often become very difficult tasks due to the presence of non-relevant signals caused by geometric reflectors. The present work introduces effective and systematic approaches to take care of such a difficulty by use oi angle beam ultrasonic testing models that can predict the expected signals from various targets very accurately. Specifically, the model-based TIFD (Technique for Identification of Flaw signals using Deconvolution) is Proposed for the identification of the crack tip signals from the non-relevant geometric reflection signals. In addition, the model-based Size-Amplitude Curve is introduced for the reliable sizing of surface breaking vertical cracks.

A Feasibility Study on Dissimilar Metals Friction Weld Strength Analysis by Ultrasonic Techniques (초장파에 의한 이종재 마찰용접 강도해석 가능성에 관한 연구)

  • 오세규;김동조
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1986
  • Friction Welds are formed by the mechanisms of diffusion as well as mechanical inter-locking. The severe plastic flow at the interface by the forge action of the process brings the subsurface so close together that detection of any unbounded area becomes very difficult. No reliable method is available so fat to determine the weld quality nondestructively. The paper presents an attempt to determine weld strength quantitatively using the ultrasonic pulseecho method. The new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. This coefficient provides a single quantitative measurement which involves both acoustic energy reflected at the welded interface as well as transmitted across the interface. As a result, it was known that the quantitative relationship between the coefficient and the weld strength (torsional strength) could be drawn.

  • PDF

Grid Map Building based on Reliability Model of Sonar Data (초음파 데이터의 신뢰도 모델 기반 지도 작성)

  • Han, Hye-Min;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1219-1226
    • /
    • 2011
  • This paper proposes a novel approach to building an occupancy grid map using sonar data. It is very important for a mobile robot to recognize and construct its surrounding environments for navigation. However, the grid map constructed by ultrasonic sensors cannot represent a realistic shape of given environments due to incorrect sonar measurements caused by specular reflection. To overcome this problem, we propose an advanced sonar sensor model which consists of distance and shape factors used to determine the reliability of sensor data. Through this sensor model, a robot can build a high-quality grid map. The proposed method was verified by various experiments and showed that the robot could build an accurate map with sonar data in various indoor environments.

Ultrasonic Measurement in Bovine Serum Albumin Solution (Bovine Serum Albumin 수용액의 초음파 측정)

  • Jong-Rim Bae;Seung Hyun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.329-334
    • /
    • 1992
  • Ultrasonic absorption was measured in bovine serum albumin (BSA) aqueous solution (50 g/l) in the frequency range from 100 kHz to 1600 MHz at neutral pH. Three experimental techniques were used to cover the wide frequency range : plano-concave resonator, conventional Bragg reflection, and high-resolution Bragg reflection methods. The absorption spectrum at neutral pH fitted the relaxation curve well using the distribution function of a mirror image of Davidson-Cole function. The relaxaition behavior was interpreted in terms of various degree of hydration of BSA molecules.

  • PDF