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Use of the Mass-Spring Lattice Model for Simulation
of Ultrasonic Waves in Austenitic Welds

Eunsol Baek*T and Hyunjune Yim*

Abstract Feasibility is studied for an application of the mass-spring lattice model (MSLM), a numerical model
previously developed for unidirectional composites, to the numerical simulation of ultrasonic inspection of austenitic

welds modeled as transversely isotropic. Fundamental wave processes, such as propagation, reflection, refraction, and
diffraction of ulirasonic waves in such an inspection are simulated using the MSLM. All numerical results show
excellent agreement with the analytical results. Further, a simplified model of austenitic weld inspection has been
successfully simulated using the MSLM. In conclusion, a great potential of the MSLM in numerically simulating
ultrasonic inspections of austenitic welds has been manifested in this work, though significant further efforts will be

required to develop a model with field practicality.
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1. Introduction
Austenitic welds in many components of a
nuclear power plant have been known difficult to
inspect using the ultrasonic nondestructive testing
method. This is mainly because those welds are
anisotropic and inhomogeneous in their elastic
properties, which may be attributed to non-uniform
cooling during the formation of the weld.
Propagation and scattering of ultrasonic waves in
anisotropic media are much more complex than and
much different from those in isotropic media.
Therefore, to correctly interpret ultrasonic test
results of an anisotropic austenitic weld, thorough
understanding of wave phenomena therein is crucial.
A considerable number of studies have addressed
ultrasonic wave phenomena in anisotropic austenitic
welds. A noteworthy example is the series of work
done by Ogilvy (1985; 1986). She used the ray
method to trace the ultrasonic energy flow, and
focused on finding the “optimal” direction of

ultrasonic energy transmission for a given region of

inspection. The ray method, however, cannot

account for the effects of diffraction from

discontinuities such as cracks which are often major
investigation. In - addition,

targets of ultrasonic

Langenberg et al. (2000) used Huyghens’ principle

in conjunction with the elastodynamic finite
integration technique to model various wave
phenomena involved in ultrasonic testing of

anisotropic welds, and compared the numerical

results with experiments. Yamawaki and Saito
(2000) developed a convenient finite difference
method based on the nodal calculation method, and
applied it to simulate various wave phenomena
including  point-source ~ wave  generation  in
anisotropic media, and reflection and refraction in
layered anisotropic media.

The present paper investigates the feasibility of
using the mass-spring lattice model (MSLM) to
simulate ultrasonic testing of anisotropic austenitic
welds. The MSLM has successfully been used for
simulation of ultrasonic waves, mostly in isotropic

media (Yim and Sohn, 2000; Yim and Choi, 2000).
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A slightly modified of MSLM for

transversely isotropic media (such as unidirectional

version

composites) is used to simulate various fundamental
problems related to the propagation and scattering
welds.  The

compared with the

of ultrasonic waves in austenitic
computed wavefields are
analytical solutions, if any. Based on the results, the
potential for the use of this model in simulating

ultrasonic inspection of austenitic welds is discussed.
2. Problem Definition and Numerical Model

Problems to be dealt with in this paper are
defined here. A two-dimensional schematic diagram
for the actual ultrasonic testing of an austenitic weld
is shown in Fig. 1. Ultrasonic wave emitted from
the transducer in Fig. 1 will undergo the following
four fundamental processes: propagation, free-boundary
reflection, reflection/refraction at material interface,
and scattering from cracks. Therefore, this paper, as
a preliminary study, investigates the capability of
the MSLM, described below, to accurately simulate

each of these fundamental processes.

Probe
./ Wedge Weld
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Fig. 1 Two-dimensional  schematic

ultrasonic testing of welds

diagram  for

Simplifying assumptions are made as to the
material properties of the austenitic weld. The
properties within the actual weld are assumed to be
uniform, though they are not in reality. In addition,
the elastic properties of the weld are assumed to be

transversely isotropic, with the axis of symmetry
oriented along the *;-axis in Fig. 1. The elastic

constants and density of the transversely isotropic

austenite are adopted from Ogilvy (1986) as listed

in Table 1. Furthermore, only two-dimensional
problems are considered mainly because the numerical
model used in this study is two-dimensional at its
current stage of development. The plane of interest
X - X3

is taken as the plane in Fig. 1, an

orthogonal plane of the transversely isotropic weld.

Table 1 Material properties of transversely isotropic
austenitic weld
Property | Values
C, 26.3x10° [N/m’]
(o 9.8x10° [N/m’]
Cy 14.5%x10° [N/m’]
Cs 21.6x10" [N/m’]
Cy 12.9x10° [N/m’]
C, 8.25x10% [N/m’]
P 7900 [kg/m’]

Now, the numerical model to be used in this
study js introduced. The model is a two-dimensional
MSLM, based on the assumption of plane-strain
states. The MSLM is a numerical model that
consists of lumped masses representing the body’s
inertia, and springs representing its elasticity (Yim
and Sohn, 2000). The MSLM to be mostly used in
this study is the one, shown in Fig. 2, which was
developed for transversely isotropic ~ media,
particularly for unidirectional composites (Yim and
Choi, 2000). Note that the mesh sizes in the
horizontal and vertical directions in Fig. 2 are set
differently because the wave velocity in anisotropic
media varies as a function of its propagating
direction. The difference equations may easily be
obtained by establishing the dynamic governing
equations for the center mass in Fig. 2 as functions
of the relative displacements of all adjacent masses

{(Yim and Choi, 2000). The horizontal and vertical
grid spacings, h and M in Fig. 2, are determined
such that /At and /At equal the fastest wave
speeds in the two directions, respectively, where
At is the time step whose value is typically

chosen as 1/20 of one period for harmonic waves
(Yim and Sohn, 2000).
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—

Fig. 2 Two-dimensional mass-spring lattice model

developed for transversely isotropic media

3. Numerical Simulation

Each of the fundamental processes listed above,

that is, propagation, free-boundary reflection,
refraction at material interface, and scattering from a
crack, is simulated using the MSLM. The computed
wavefields are presented, and comparisons with

analytical results, if any, are given in this section.

3.1. Generation and Propagation of Waves

First of all, waves generated from a point source
are simulated. The source is modeled as a lumped
mass, at the center of the medium, subjected to a
one-cycle sinusoidal force in the horizontal direction,
as indicated in Fig. 3(a). The frequency of this and
all the following sinusoidal excitations throughout this
study is set to 5 MHz. Computed wavefield for this
case is shown in Fig. 3(b). In all figures of
numerical results throughout this study, the brightness
of each point (or pixel) represents the magnitude of
displacement at that pixel, on a gray scale.

The analytically obtained wave surfaces (Musgrave,
1954; 1970) shown in Fig. 4 may directly be
compared with the numerical results shown in Fig.

3(b). This is because a wave surface may be

sources:  (a)

from point
schematic diagram of problem; (b) numerical
result

Fig. 3 Waves generated

regarded as composed of infinitesimal plane wave
segments, having wave normals jn all directions,
emitted from the origin of the coordinate system. It
is well known that transversely isotropic media may
support  three  different ~modes of  waves:
quasi-Jongitudinal (qP), quasi-shear vertical (qSV),
and quasi-shear horizontal (qSH), where “quasi”
emphasizes that their particle displacements are
neither perpendicular nor parallel to the phase planes.

Sections of the three corresponding wave surfaces in

the % % plane are shown in Fig. 4. Note the
existence of cusps in the qSV wave surface. Taking
into account the absence of qSH wave in the
numerical resulis due to the plane-strain assumption,

good agreement is observed between the analytical

result and the corresponding numerical results.

X

6000

-6000-4

Fig. 4 Section of wave surfaces in ¥ ~% plane
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Fig. 5 is for the case of line source excitation. In
an afttempt to generate purely qSV waves, we
considered a line source (straight line segment in
Fig. 5(a)) that has forces oriented in an oblique
direction (parallel to the line segments with two
arrowheads), which coincides with the displacement
direction of the desired qSV wave. In all schematic
diagrams in Figs. 5 through 16, this graphical
notation holds. The numerical result shown in Fig.
5(b) shows the generation of a single qSV mode of
wave. Further, the waves do not propagate in the
direction normal to phase planes, but in oblique
directions. This direction of wave propagation is
indeed the direction of energy propagation, related
to the Three

directions shown in Fig. 5 represent the wave

group velocity vector, different

normal

direction, the direction of

particle
displacement, and energy propagation direction,
respectively. All these directions found numerically
agree well with the corresponding directions found

analytically.

- e «—— energy
+ -+ displacement
I phase

Fig. 5 Waves generated from line sources: (a)
schematic diagram of problem; (b) numerical
result

3.2. Reflection of Waves at Free Boundary

In this subsection, reflection of waves at free
boundaries is considered in problems schematically
shown in Figs. 6(a) and 7(a). Free boundaries are
numerically modeled by imposing traction-free
conditions, namely, 9:=T:=9 written in the finite
difference form. The angle of incidence is 18.4° in
Figs. 6 and 7. Numerical results are given in Figs.
6(b) and 7(b), both showing expanded views of
small regions along the lower free boundary where
reflection occurs. In these problems, both gqP and

qSV waves (labeled RqP and RqSV, respectively)

generated by the line sources are reflected with

mode conversion.

Fig. 6 Reflection of plane gP incident wave at 18.4°
(a) schematic diagram of probiem; (b) numerical
result

Fig. 7 Reflection of plane gSV incident wave at 18.4%:
(a) schematic diagram of problem; (b) numerical
result

The angle of reflection from a free boundary may
analytically be calculated using the Snell’s law,
often by a graphical method based on the slowness
surfaces (Henneke, 1972). For example, the angle of
reflection may be determined by the following

procedure, shown in Fig. 8 for the case of incident

gP waves. Note that the $i-axis in Fig. 8 coincides

with the free boundary. First draw the slowness

IqP

vector of the incident qP wave, s, oriented by its

angle of incidence, 6,, and having its end at the
origin of the slowness plane, as shown in Fig. 8.

Then, draw a base vector, b, defined as the

b7 on the $-axis, and draw a

projection of s
translated copy of b starting at the origin of the
slowness plane. Now, extend a straight vertical
(dot-dashed) line through the end point of the
translated b. Then, the intersections of this straight
line with the slowness surfaces define the endpoints
of the slowness vectors for the reflected waves. In
the case of Fig. 8, one intersection (point A) with
the qP surface and another (point B) with the qSV
surface are found, resulting in the slowness vectors,

Ry RySV
s g g

and 8, for the reflected gP and qSV
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waves. Therefore, it may be, found that the angle of
reflection for the reflected qP wave is equal to the

angle of incidence, 6,, whereas that for the

reflected qSV wave is given by the angle, &. It
should be mentioned here that a normal vector to a
slowness surface at an intersection point (such as 4
and B in Fig. 8) defines the direction of energy
propagation of the corresponding reflected wave, as

indicated by the normalized group velocity vectors.

gsv | !

Fig. 8 Analytical determination of angles of reflection
using slowness surfaces for incident gP waves

The graphical method shown in Fig. 8 for
incident P waves may similarly be applied to the
cases of incident qSV waves (see Fig. 9) with some
Close

examination of Fig. 9 reveals that there are two

complications to be addressed below.

important values for the angle of qSV incidence:
0. =28.8" (called the critical angle) and G =37.8
at which the pertinent vertical lines (dotted lines a-a
and b-b in Fig. 9) are tangent to the qP and gSV
slowness surfaces, respectively. It may easily be
observed from Fig. 9 that when the angle of qSV
incidence is less than O, two reflected waves —
one gP and the other qSV — are generated as in
Fig. 7(b). Similarly, when the angle of incidence is
between . and .., only one reflected qSV wave
will result. This case is not further discussed

because it occurs in isotropic media as well. The

final case where the angle of incidence exceeds
is of particular interest. Consider, for example, the

case of dotted vertical line c-c, cotresponding to an

angle of incidence, &, in Fig. 9. In this case, two

intersections with the SV surface, giving slowness

RgSV (1) RqSV (2)

vectors s and s , are found in the upper
half plane of Fig. 9. Examining the associated
energy propagation directions, however, the reflected

RgSV(2) turns

gSV wave whose slowness vector is s
out not to exist because its energy is directed
toward the exterior of the medium as indicated by
¢*"D - Qearching for any other possible reflected
waves as suggested by previous work (Henneke,
1972; 2000), two more

intersections of the c-c line with the (dashed) gSV

Langenberg et al,

slowness surface in the lower half plane of Fig. 9,

RqSV (3) RgSV (4)

specified by s and s , are considered. Of

these two, the reflected qSV wave associated with

RySV (3)

s is expected to exist because its energy

propagates toward the medium as indicated by

ARGSV (3)

C Therefore, two reflected qSV  waves,

RgSV (1) RqSV (3)

corresponding to s and s with angles of

reflection o and o in Fig. 9, are expected to
exist in numerical results, and they indeed manifest
themselves (RqSV(1) and RqgSV(3)) in Fig. 10,
where the angle of the qSV incidence is ¢ =47".
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Fig. 9 Analytical determination of angles of reflection
using slowness surfaces for incident gSV
waves
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Fig. 10 Reflection of plane gSV incident wave at 47°
(@) schematic diagram of problem; (b)
numerical result

Angles of reflection have been measured from the
numerical results for various angles of incidence
with incident qP and qSV waves. These numerically
measured angles of reflection have shown excellent
agreement (that is, within error of 0.5%) with the
corresponding  analytical values found by the
graphical method shown in Figs. 8 and 9. Thus, the
MSLM is proven to be capable of accurately
simulating the reflection behavior of waves at free

boundaries of transversely isotropic media.
3.3 Refraction of Waves at Material Interface

In the ultrasonic testing setup shown in Fig. 1, it
is assumed that ultrasonic waves penetrate into the
weld through the interface between the isotropic
parent medium and the anisotropic weld (Ogilvy,
1985; 1986). In this study, the isotropic parent
medium is taken to be ferrite, whose Lamé’s elastic
constants and density are set as 4=1.10x10" N/m*
H=274x10" N/m® and p=7860kg/m’  respectively.

Refraction of P and SV incident waves is
considered in problems schematically depicted in
Figs. 11(a) and 12(a), respectively, with angles of
incidence of 45° and 20° with respect to the
interface. The material interface has been modeled
by imposing the continuity condition of tractions,
015 and O, across the interface. The numerical
results given in Figs. 11(b) and 12(b) reveal that
both gP and qSV refracted waves (labeled TqP and
TqSV) are transmitted into the anisotropic weld at
the same time as P and SV reflected waves
(labeled RP and RSV) are generated and propagate

back into the isotropic parent medium.

Parent medium
(steel)

Fig. 11 Reflection and refraction of plane P incident
wave at 45% {a) schematic diagram of

probiem; (b) numerical result

— Interface

Parcnt medium
(steel)

Fig. 12 Reflection and refraction of plane SV incident
wave at 26.6% f{a) schematic diagram of
problem; {b) numerical result

The graphical method shown in Figs. 8 and 9 for
free-boundary reflection may similarly be applied to
the problem of refraction, except that two different
slowness surfaces, corresponding to the two
different media, must be used in the left and right
half planes divided by the (vertical) interface. Fig.
13 shows such a diagram, where the-axis may be

regarded as the material interface. A typical case of

incident P wave having the angle of incidence, &,
is dealt with in Fig. 13, where a qP and a qSV

waves are found to be refracted with angles of

refraction, @' and ¢, respectively. Cases of
incident SV waves are more complicated, but they
are not discussed in detail here because they may
be handled in the same manner as in the previous
subsection. An example of computed wavefield is
shown in Fig. 14, which shows two refracted qSV
waves (both labeled qSV) generated due to an
incident SV wave of an angle of incidence, 71.6°.

Such refraction behavior may be explained by
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considering in Fig. 13 a case similar to the one
represented by line c-c in Fig. 9. (‘Line c-¢’ must
be drawn horizontally in Fig. 13 because of the

horizontal interface.)

Fig. 13 Analytical determination of angles of refraction
using slowness surfaces for incident gP waves

Fig. 14 Reflection and refraction of plane SV incident
wave 71.6° (a) schematic diagram of problem;
(o) numerical result

From the numerical results in Figs. 11, 12 and
14, and other similar results for various angles of
incidence and for incident P and SV modes, the
angles of refraction have been measured. As in
the case of free-boundary reflection, they have
exhibited excellent agreement (that is, within up to
0.6° error) with the analytical values determined
by the graphical method described above. This
clearly demonstrates the capability of MSLM to
of refraction of

predict accurately the angles

the ultrasonic  waves transmitted into  the

anisotropic weld.

3.4 Scattering of Waves from cracks

As the last fundamental process of waves in Fig.
1, scattering of ultrasonic waves from cracks in
the anisotropic weld is simulated in this subsection.
Various cases of relative orientation of the incident
wave with respect to a crack have been simulated,
and only two of them are presented in this paper.

Figs. 15 and 16 shows the computed wavefields
for incident qSV and ¢P waves, respectively,

propagating in the directions parallel and
perpendicular to a horizontal semi-infinite crack
15(a) and 16(a)). In both of the
numerical results given in Figs. 15(b) and 16(b),
diffracted qP (labeled DqP) and diffracted qSV

(DgSV) waves emanating from the crack tip are

(see Figs.

clearly observed. In addition, a reflected qP wave

(RqP), generated from the upper crack face, is

Fig. 15 Computed wavefield for incident gSV wave
propagating along  horizontal  crack:  (a)
schematic diagram of problem; (b) numerical
result

Fig. 16 Computed wavefield for incident gP wave
propagating normal to horizontal crack: (a)
schematic diagram of problem; (b) numerical
result



wut ) 7AALERE A A 26 B A 1 & (2006 2%) 37

observed in Fig. 16(b). Since comparable analytical
solution is not readily available, only the existence
of the diffracted waves centered at the crack tip
has been discussed. Therefore, the MSLM may be
claimed to able to correctly predict the diffraction
behavior of ultrasonic waves from a crack tip at

least from the qualitative point of view.

4. Simulation of Ultrasonic Inspection of a
Model Weld
Combined use of the of MSLM

demonstrated so far enables the simulation of a

features

simple ultrasonic testing problem, further simplified
from the one in Fig. 1. That is, the geometry of
the weld bead is simpler than in Fig. 1, and the
weldment is assumed to be homogeneous.

The example problem is aimed at detecting a
lack of sidewall fusion in a V-butt austenitic weld.
In the schematic diagram shown in Fig. 17, the size
of specimen is approximately 8.65 cm by 2.16 cm.
The properties of steel are the same as before, and
it is assumed that the property of the austenitic
weld is uniform within the V-butt weld, which is

not the case in real world.

Austenti? weld
|
Steel Steel 2.16 cm
60 .
8.65 cm “~ Fusion lack |

Fig. 17 Schematic diagram of a pulse-echo setup
for ultrasonic testing of welds containing a
lack of sidewall fusion

Ran

Fig. 18 Ray paths for the basic pulse-echo setup
in Fig. 17

For this problem, only a basic pulse-echo scheme
is considered. Fig. 18 shows ray paths for a basic
pulse-echo testing of sidewall defects. All ray paths
are SV or qSV waves. The rays represent energy
propagation directions, with the wavefronts shown
as three parallel line segments.

Simulated wavefields for such a problem at a few
discrete times are shown in Fig. 19. The
transmitting probe is assumed to be a 45° SV probe
as simulated by the method described by Yim and
Baek (2002). As shown in Fig. 19(a), a transmitting
and receiving probe (often called the T/R probe)
introduces 45° incident SV waves into the isotropic
steel. Fig. 19(b) shows the SV incident waves
transmit into the austenitic weld and Fig. 19(c) the
refracted waves reflect from the lack of sidewall
fusion. In Fig. 19(d), they refracted to the parent
medium steel and return to the T/R probe shown in
Fig. 19(e) and 19(f). Finally, the wavefield becomes
very complicated in Fig. 19(f) due to the multiple
reflections and refractions at the weld faces, and
diffraction from the two points of the lack of
sidewall fusion.

The voltage signal graph shown in Fig. 20 is
obtained as a result of the numerical simulation,
which shows a reflected wave signal from the
fusion lack. In Fig. 20, wave packets 1 and 2 are
the so-called “main bang”, wave packet 3 may be
identified as the diffracted SV wave from the left
bottom corner of the weld, and wave packet 4 is
the defect signal. It is noteworthy that the “main
bang” seems to consist of two isolated wave packets
because of wave cancellation in between, and that
the defect signal is significantly big in this problem
because the wave normal of these refracted SV
waves happen to be almost normal to the lack of
fusion. The absolute value of the signal in the graph
has no meaning, and only the relative values matter.

In this example, we have seen the feasibility to
use the MSLM for simulating ultrasonic testing in

problems involving anisotropic welds.
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U]

Fig. 19 Computed wavefields, at various time steps
for problem in Fig. 17
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Fig. 20 A-Scan waveform for problem in Fig. 17

5. Conclusions

As a prospective and effective method to simulate
ultrasonic testing of transversely isotropic austenitic
welds, a version of the MSLM — a numerical
model previously used for unidirectional composites
— has been considered. In order to investigate the
potential of the model in this application, each of
the fundamental processes undergone by ultrasonic
waves in a typical ultrasonic testing of an austenitic
weld has been simulated.

First of all, generation of waves from point and
line sources and their propagation in an unbounded
anisotropic medium have been simulated. The
numerical results exhibited major characteristic
features of waves in anisotropic media, such as
cusps on the qSV wave surface, predicted by the
analytical analysis. Secondly, reflection of waves at
free boundaries of the austenitic weld has been
simulated for various angles of incidence and for
both qP and qSV modes of the incident wave. In
all cases considered, the number and modes of
reflected waves and their angles of reflection have
shown excellent agreement with the analytical
based on the slowness surfaces. In
MSLM

existence and angles of two ¢SV reflected waves,

results
particular, the correctly predicted the
so-called
2000). The third process

considered was the transmission of plane waves

including  the ‘second qSV  wave’

(Langenberg et al,

into the anisotropic weld medium across a plane
interface with the isotropic parent medium. Again,
in all cases simulated, the number and modes of
refracted waves and their angles have agreed
excellently with the analytical results. In addition,
wavefields scattered from cracks have been
computed, and some preliminary results shown.
Diffracted waves from a crack tip have been
clearly observed in the numerical results as
predicted by the wave mechanics.

Finally, by combining all the features of the
MSLM demonstrated in the fundamental problems,

the ultrasonic inspection has been successfully
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simulated by

using a simple ‘model’ of a

homogeneous weld and a numerical

austenitic
model for an oblique SV probe. The computed
wavefields in this problem have shown details of
wave interaction with the weld, and also exhibited

waves to be

detected by the probe in the
pulse-echo setup. All the results presented in this
paper clearly manifest a great potential of the
MSLM in the numerical modeling of ultrasonic
inspection for austenitic welds. Yet, this paper is
merely a presentation of preliminary results, and
further

development of the MSLM so that it may be used

much more effort is required for
to model the actual situation of ultrasonic austenitic
weld inspection, e. g the non-homogeneous

microstructure of the weld.
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