• 제목/요약/키워드: ultrasonic pulse

검색결과 519건 처리시간 0.02초

가열 중 콘크리트의 초음파속도 평가 (Ultrasonic Pulse Velocity Evaluation of Concrete During Heating)

  • 황의철;김규용;이상규;손민재;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.210-211
    • /
    • 2018
  • In this study, the ultrasonic pulse velocity of the concrete cooled to room temperature after heating and the concrete during heating were evaluated. Also, the ultrasonic pulse velocity and mechanical properties of concrete were compared. As a result, the ultrasonic pulse velocity decreased when the concrete degraded during heating, and the ultrasonic pulse velocity of the cooled concrete decreased significantly. Which is consistent with the deterioration of mechanical properties of concrete.

  • PDF

초음파속도법에 의한 고강도 콘크리트의 압축강도 추정에 관한 연구 (Estimating Compressive Strength of High Strength Concrerte by Ultrasonic Pulse Velocity Method)

  • 임서형;강현식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this study is to suggest the non-destructive equation for the estimation of concrete strength by ultrasonic pulse velocity at the Age of 28day compressive strength of $600{\sim}1000kg/cm^2$. For this purpose, selected test variables were water-hinder ratio, replacement ratio of silica fume, binder content, maximum size of coarse aggregate and sand-aggregate ratio. From the results, the average increase or decrease of ultrasonic pulse velocity is 61m/sec for each 1% of moisture content. And the correlation equation between the ultrasonic pulse velocity and the compressive strength of concrete is as follows. $F_c=896.3V_p-3514$ ($R^2$ = 0.81) where, $F_c$ : compressive strength($kgf/cm^2$), $V_p$ : ultrasonic velocity(km/sec).

  • PDF

양생조건이 경량골재 콘크리트의 ASR에 미치는 영향 (Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete)

  • 성찬용;김성완;민정기
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

콘크리트의 초음파속도 시험식 제안 (A New Strength Equations of Concrete by Ultrasonic Pulse Velocity Test)

  • 유재은;박송철;김민수;권영웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.619-622
    • /
    • 2005
  • This study concerns the new strength equation of concrete by ultrasonic pulse velocity test. There are not only few estimate strength equations of concrete by ultrasonic pulse velocity test, but also many problems to apply them because of time,. cost, easiness, structural damage, reliability and so on. For this study, there performed a series of test and proposed equations as follows; Linear: ${\Large f}_{ck}=-193.15+60.97Vp\;r^2=77.9\%$ Quadratic : ${\Large f}_{ck}=276.85-189.64Vp+33.22Vp^2\;r^2=80.3\%$ here, $f_{ck}$ : Estimated compressive strength of concrete by MPa Vp : Ultrasonic Pulse Velocity of concrete by km/sec

  • PDF

초음파시험법에 의한 콘크리트의 강도 추정 (A New Strength Equation of Concrete by Ultrasonic Pulse Velocity Test)

  • 유재은;박송철;김민수;권영웅
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.129-132
    • /
    • 2004
  • This study concerns the new strength equation of concrete by ultrasonic pulse velocity test. There are not only few estimate strength equations of concrete by ultrasonic pulse velocity test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of test and proposed equations as follows; $$Linear\;:\;f_{kc}=65.43Vp-207.18\;r^2=80.8\%$$ $$Quadratic\;:\;f_{ck}=42.35Vp^2-250.71Vp+378.8\;r^2=83.7\%$$ here, fck : Estimated compressive strength of concrete by MPa Vp: Ultrasonic Pulse Velocity of concrete by km/sec.

  • PDF

초음파 비파괴시험법을 이용한 데크재의 현장평가 (Ultrasonic Nondestructive On-Site Evaluation of Decks in-Service)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.486-493
    • /
    • 2015
  • 설치된 데크재에 대한 성능을 평가하기 위하여 초음파 비파괴시험법을 사용하였다. 먼저 3종류의 데크재에 대해 트랜스듀서의 배치에 따른 직접법과 간접법간의 측정방법간의 차이를 검증하였으며 두 번째로 설치된 데크재의 사용시간의 경과에 따른 초음파속도를 측정 비교하였다. 마지막으로 데크재의 사용수명을 파악하기 위하여 사용시간의 경과에 따른 초음파속도의 변화를 조사하였다. 시험결과 직접법과 간접법간의 측정방법간의 차이는 없는 것으로 나타났으며 직접법에 대한 간접법의 비율은 1.02와 1.05로 각각 나타났다. 설치된 데크재에서 시간의 경과에 따라 초음파 속도는 감소하였으며 이들 간의 관계는 선형으로 나타났다. 시험결과로부터 초음파 비파괴시험법은 설치된 데크재의 유지보수에 관한 효율적인 수단이 될 수 있을 것으로 생각된다.

유도초음파를 이용한 외부 강선의 긴장력 평가기법 개발 (Development of Evaluation Method of External Tendon Force by Using the Deriving Ultrasonic Pulse)

  • 박승범;홍성수;유성원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.181-192
    • /
    • 2007
  • 외부 강선의 긴장력 측정 기법은 국내의 경우, 거의 전무한 연구 실적을 가지고 있는 실정이다. 따라서 본연구의 목적은 강선의 긴장력을 유도 초음파법을 이용하여 측정하는 것으로 이를 위하여 시험용 웨지 및 측정 시스템을 설계 제작하여 강선에 가하여지는 긴장력 변화에 따른 초음파의 특성을 분석하여 그 상관관계를 도출하고, 이를 기반으로 초음파 특성 변화로부터 강선에 가하여지는 긴장력을 측정할 수 있는 기법을 개발하고자 한다. 이에 긴장력-속도변화의 관계식들을 구하여 제시하였으며, 제시된 식들의 오차는 약 3.92~8.77%로 나타나 현장적용이 가능할 것으로 판단된다.

초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상 (Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method)

  • 원종필;박성기
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

콘크리트 속의 철근이 초음파 속도에 미치는 영향 (Influence of Steel Bar on Ultrasonic Velocity in Concrete)

  • 김도현;임홍철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.122-123
    • /
    • 2014
  • Measurement of the strength of concrete is an important indicator of the safety of the fresh as well as old concrete structures. It is possible to evaluate the strength of the concrete by means of an ultrasonic velocity method which is a kind of non-destructive inspection method for safety diagnostic evaluation of the building structures with aging. Steel embedded in the concrete and age of the concrete may affect ultrasonic pulse velocity. In order to accurately assess the strength of the concrete, it is necessary to understand rebar embedded in the concrete, steel shapes in various forms which effect ultrasonic pulse velocity. In this study, by measuring the velocity of ultrasonic waves generated when the waves pass through the ultrasonic pulse in a direction perpendicular to the reinforcing bars embedded in concrete, the effect of reinforcing bars on ultrasonic velocity accurately was verified and used to estimate the strength of the concrete.

  • PDF

RC 및 PSC 콘크리트에서 반발도 및 초음파 속도의 변화에 대한 연구 (A Study on the Statistical Distribution of Rebound Number and Ultrasonic Pulse Velocity in RC and PSC Concrete Structures)

  • 사민형;윤영근;이인복;우인성;오태근
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.53-58
    • /
    • 2017
  • The rebound hammer test and the measurement of ultrasonic pulse velocity(UPV) have been widely used for the physical properties & condition evaluation of reinforced & prestressed concrete structures for a long time, but the acoustoelastic effects by the prestressing in the prestressed concrete structures on the rebound number and ultrasonic pulse velocity have not been studied clearly. Therefore, this study investigated the data distribution of the rebound numbers and ultrasonic pulse velocities in reinforced and prestressed concrete slabs of $3000{\times}3000mm$ with a thickness of 250 mm. Also, the Kolmogorov-Smirnov goodness-of-fit test was done in order to identify statistical consistency and reliability. The statistical analysis results show that the rebound number and ultrasonic pulse velocities increased about 1.9% and 2.5%, respectively when prestressing was applied. As expected, the UPV shows better statistical reliability and potential for in situ evaluation than the RB because the RB are more sensitive to testing posture, surface condition, temperature and humidity so on. The experimental data in this study can be used for the condition assessment of reinforced and prestressed concrete structures by the rebound number and ultrasonic pulse velocity.