• Title/Summary/Keyword: ultrasonic process

Search Result 671, Processing Time 0.026 seconds

Micro-machining of Glasses using Chemical-assisted Ultrasonic Machining (화학적 초음파가공을 이용한 유리의 미세가공)

  • 전성건;신용주;김병희;김헌영;전병희
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2085-2091
    • /
    • 2003
  • An ultrasonic machining process has been known as efficient and economical means fer precision machining of glass or ceramic materials. However, because of its complexity, the mechanism of the machining process is still not well understood. Therefore, it is hard to optimize the process parameters effectively. The conventional ultrasonic machining which uses the abrasive slurry only, furthermore, is time-consuming and gives the relatively rough surface. In order to increase the material removal rate and improve the integrity of the machined surface, we have introduced the novel ultrasonic machining technique, Chemical-assisted UltraSonic Machining(CUSM). The desktop-style micro ultrasonic machine has been developed and the z-axis feed is controlled by the constant load control algorithm. To obtain the chemical effects, the low concentration HF(hydrofluoric acid) solution, which erodes glass, added to alumina slurry. Through various experiments and comparison with conventional results, the superiority of CUSM is verified. MRR increases over 200%, the surface roughness is improved and the machining load decreases dramatically.

Self-localization of a Mobile Robot Using Global Ultrasonic Sensor System (전역 초음파 센서 시스템을 이용한 이동 로봇의 자기 위치 추정)

  • 이수영;진재호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-151
    • /
    • 2003
  • A global ultrasonic sensor system for self-localization of a mobile robot is proposed in this paper. The global ultrasonic sensor system consists of three or more ultrasonic transmitters fixed at some positions in the world coordinate and receivers in the moving coordinate of a mobile robot. In this global sensor system it is easy to get state vector of the mobile robot in the world coordinate from the distance information between each ultrasonic transmitter and receiver. An extended kalman filter algorithm is used to process the noisy ultrasonic signal and to estimate the state vector. In case of using several independent ultrasonic transmitters, it is necessary to avoid the cross talk among the ultrasonic waves and to synchronize between each ultrasonic transmitter and receiver. The small sized radio frequency modules are adopted to solve the cross talk and the synchronization problem Computer simulation and experiments are carried out to verify the effectiveness of the proposed ultrasonic sensor system.

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

Investigation of Transmission Process for Ultrasonic Wave in Wood (목재 내 초음파 전달 경로 구명)

  • Lee, Jun-Jae;Kim, Gwang-Mo;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Among the nondestructive evaluation (NDE) methods for wood defect detection, ultrasonic wave has been considered as competitive technique in terms of economics and workability. Until now, researches on application of NDE methods for wood have focused mainly on standing tree and logs. Recently, some attempts have been conducted with NDE technique, for evaluation of wooden structural members. However, wooden structural members are different from others (standing tree or log) in various aspects. Expecially when some parts or whole member are covered with other materials, they can't be evaluated appropriately on general NDE methods. For the purpose of development of proper NDE technique for the wooden structural members, the ultrasonic wave transmission process investigated on artificial defect in wood. First, various types of transmission process were assumed, and then the transmission times were predicted respectively. Predicted times were compared with the measured time of ultrasonic wave and then a suitable type of transmission process is determined. In case of the ultrasonic wave doesn't transmit directly due to defect, it is reflected once only at the opposite surface of member, and the path is accord with the line of shortest length.

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

Evaluation and Design of Ultrasonic Vibrator for Dental Surgery (치과용 골 수술기의 초음파 진동자 설계 및 평가)

  • Park, Ki-Moon;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.102-108
    • /
    • 2016
  • A dental ultrasonic surgical instrument, commercially known as a scaler, is a high-value-added advanced technology that is used for tartar removal, implant operations, and gum and jaw bone surgery. In this study, the piezoelectric phenomenon for making linear motion associated with input electrical signals was studied, and the behavior of the ultrasonic vibrator was investigated by using the commercially available finite element program ANSYS(R) for the purpose of designing dental surgery tools. Modal analysis was carried out, and the optimal frequency range was calculated from the analyzed results. The ultrasonic vibrator was then redesigned based on the calculated optimal frequency range. The performance of the system was tested, and consequently, the proposed methodology was proven useful in vibrator design.

Characteristics of Chemical-assisted Ultrasonic Machining of Glass (화학적기법을 이용한 유리의 초음파가공 특성)

  • Kim, B.H.;Jeon, S.K.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

An Experimental Study of enhancing heat transfer by Ultrasonic Vibration (초음파 가진에 따른 열전달 향상에 관한 연구)

  • Youn, Joung-Hwan;Oh, Yool-Kwon;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.235-240
    • /
    • 2001
  • This study presents experimental work on phase change heat transfer, in order to increase heat transfer rate, ultrasonic vibrations were introduced. Solid-liquid phase change occurs in a number of situations of practical interest. This study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. Some common examples include the melting of edible oil, metallurgical process such as casting and welding, and materials science applications such as crystal growth. Therefore, this study presented the effective way to enhance phase change heat transfer.

  • PDF

The Establishment of Bonding Conditions of Cu Sheet using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 접합성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper gives a description of an experimental study of the ultrasonic welding of metals. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu sheet. The Cu sheet welding was done with different amplitude, pressure and welding time, and its maximum tension was measured. Maximum tension of 177.99N was obtained when the pressure was 2.5bar, amplitude was 80%, and welding time was 0.34sec. Therefore, excessive welding condition negatively influences maximum tension measurement result.

Effect of Ultrasonic Vibration on Culling Characteristics of Hot Rolled Strip (열연강판의 절단특성에 미치는 초음파진동의 영향)

  • 송길호;김기원;박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.225-229
    • /
    • 2003
  • When hot strip is trimmed in the side trimming process at the entry side of tandem cold rolling mill, due to bad quality of trimming face and burr, product quality(saw ear)becomes so bad that it causes drop of yield and claim from customers. Therefore, it was examined that applying ultrasonic vibration is an effective method to improve quality of strip trimming face and decrease burr magnitude by decreasing shear force acting between strip trimming face and knife in side trimming process of cold rolling.

  • PDF