• Title/Summary/Keyword: ultrasonic coating

Search Result 68, Processing Time 0.025 seconds

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Design and Analysis of Ultrasonic Vibrator for Conformal Coating in LED Packaging (LED 공정의 균일 코팅을 위한 초음파 진동자 설계 및 해석)

  • Son, Byeoun-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.631-636
    • /
    • 2009
  • This paper presents design and analysis of ultrasonic vibrator featuring the piezoelectric actuator. After describing a geometric configuration of the proposed vibrator, an analytical model of the ultrasonic vibrator is formulated by adopting liquid film pattern theory and wave theory. The dynamic analysis and geometric optimization are then undertaken using a software ANSYS. The optimization is performed by taking the amplitude of the tip displacement as an objective function. The fluid flow characteristics of the proposed vibrator are analyzed by taking three different fluids: water, silicon oil and ethylene-glycol. This is achieved using a software FLUENT.

  • PDF

Design and Analysis of Ultrasonic Vibrator for Conformal Coating in LED Packaging (LED 공정의 균일 코팅을 위한 초음파 진동자 설계 및 해석)

  • Son, Byeoun-Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1289-1295
    • /
    • 2009
  • This paper presents design and analysis of ultrasonic vibrator featuring the piezoelectric actuator. After describing a geometric configuration of the proposed vibrator, an analytical model of the ultrasonic vibrator is formulated by adopting liquid film pattern theory and wave theory. The dynamic analysis and geometric optimization are then undertaken using a software ANSYS. The optimization is performed by taking the amplitude of the tip displacement as an objective function. The fluid flow characteristics of the proposed vibrator are analyzed by taking three different fluids: water, silicon oil and ethylene-glycol. This is achieved using a software FLUENT.

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

Application of Generalized Lamb Wave for Evaluation of Coating Layers

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.224-230
    • /
    • 2007
  • This work is aimed to explore a possibility of using the generalized Lamb waves for nondestructive evaluation of the bonding quality of layered substrates. For this purpose, we prepared two sets of specimens with imperfect bonding at their interfaces; 1) TiN-coated specimens with various wear conditions, and 2) CVD diamond specimens with various cleaning conditions. A dispersion simulation performed for layered substrates with imperfect interfaces are carried out to get the characteristics of dispersion curves that can be used for bonding quality evaluation. Then the characteristics of dispersion curves of the fabricated specimens are experimentally determined by use of an ultrasonic backward radiation measurement technique. The results obtained in the present study show that the lowest velocity mode (Rayleigh-like) of the generalized Lamb waves are sensitively affected by the bonding quality. Therefore, the generalized Lamb waves can be applied for nondestructive evaluation of imperfect bonding quality in various layered substrates.

Experimental Evaluation on Degradation Characteristics of Epoxy Coating by Using Adhesion Force and Impedance (부착력과 임피던스를 이용한 에폭시 도장재 열화 특성에 관한 실험적 평가)

  • Nah, Hwan-Seon;Kim, Noh-Yu;Kwon, Ki-Joo;Song, Young-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • The purpose of this paper is to quantitatively investigate aging state of epoxy coating on containment structure at nuclear power plant. In order to evaluate an physical bonding of the epoxy coating, adhesion test was performed on a degraded epoxy coating on concrete specimens fabricated by accelerated aging experiment. In addition, impedance data by ultrasonic test were measured to compare with adhesion data. From almost 50 % of the specimens, aging phenomena of epoxy coating such as pin hole, blistering was discovered. To improve reliability on quality degradation of epoxy, co-relation between two kinds of different data was analyzed. By tracing co-related these data, it was possible to figure out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

An approach of using ideal gradating curve and coating paste thickness to design concrete performance-(2) Experimental work

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.35-47
    • /
    • 2012
  • The ideal gradating curve is used in this study to estimate densified aggregate blended ratio and total surface area of aggregate, there by under assigned paste amount of concrete, and coating paste thickness can then be deduced. Four groups of concrete mixtures were prepared and the corresponding concrete properties, such as workability, compression strength, ultrasonic velocity, surface resistivity and chloride ion penetration, were measured and finally the results are interpreted in terms of "coating thickness". The result shows as the coating thickness of the concrete is higher than critical one, the coating thickness on aggregate does affect the workability, and whatever workability is required the superplasticizer can be adjusted to achieve the demand workability. Under a fixed paste quality at the same age, coating paste thickness is inversely proportional to the concrete properties, especially as the coating thickness gets thinner.

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.

Degradation of Epoxy Coating due to Aging Acceleration Effects

  • Nah, Hwan Seon;Lee, Chul Woo;Suh, Yong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.99-105
    • /
    • 2006
  • This paper is to investigate feasibility on quantitative aging state of epoxy coating on concrete wall in containment structure under operation of nuclear power plants. For evaluating the physical characteristics of the epoxy coating, adhesion strengths of two kinds of degraded epoxy coating systems on both steel surfaces and concrete surfaces were measured via accelerated aging. Comparatively impedance data taken by ultrasonic test were also taken to relate with adhesion data. After aging, in case of concrete, from half of specimens, aging of epoxy coating was developed. As for steel, on $4^{th}$ inspection day, adhesion force was failed. To improve reliability on quality degradation of epoxy, relationship between adhesion and impedance was analyzed. By tracing to co-respond to these data, it was possible to Fig. out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

A Study on Detection of Small Defects for MoSi2 by Medical Ultrasonic Testing (의학용 초음파검사기에 의한 MoSi2의 미소결함 탐상)

  • Namkoong, Chai-Kwan;Kim, You-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.9-12
    • /
    • 1995
  • Detection of small defects by medical ultrasonic testing when the thermal sprayed coating by $MoSi_2$ on the metal is done. The defects may occur at the bonded surface. So, the detecting method of the defects by non-destructive in spection is desired. Here, in order to examine the possibility of the detection of the small defects by the ultrasonic. The electronic scanning ultrasonic equipment using an array probe developed as the medical ultrasonic diagnostic equipment is applied for the detection of the metal material defects. It's validity is investigated.

  • PDF