• Title/Summary/Keyword: ultrasonic attenuation

Search Result 224, Processing Time 0.023 seconds

Feasibility of Ultrasonic Inspection for Nuclear Grade Graphite (원자력급 흑연의 산화 정도에 따른 초음파특성 변화 및 초음파탐상의 타당성 연구)

  • Park, Jae-Seok;Yoon, Byung-Sik;Jang, Chang-Heui;Lee, Jong-Po
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.436-442
    • /
    • 2008
  • Graphite material has been recognized as a very competitive candidate for reflector, moderator, and structural material for very high temperature reactor (VHTR). Since VHTR is operated up to $900-950^{\circ}C$, small amount of impurity may accelerate the oxidation and degradation of carbon graphite, which results in increased porosity and lowered fracture toughness. In this study, ultrasonic wave propagation properties were investigated for both as-received and degradated material, and the feasibility of ultrasonic testing (UT) was estimated based on the result of ultrasonic property measurements. The ultrasonic properties of carbon graphite were half, more than 5 times, and 1/3 for velocity, attenuation, and signal-to-noise (S/N) ratio respectively. Degradation reduces the ultrasonic velocity slightly by 100 m/s, however the attenuation is about 2 times of as-receive state. The results of probability of detection (POD) estimation based on S/N ratio for side-drilled-hole (SDHs) of which depths were less than 100 mm were merely affected by oxidation and degradation. This result suggests that UT would be reliable method for nondestructive testing of carbon graphite material of which thickness is not over 100 mm. In accordance with the result produced by commercial automated ultrasonic testing (AUT) system, human error of ultrasonic testing is barely expected for the material of which thickness is not over 80 mm.

Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density (골다공증 진단을 위한 초음파 변수의 골밀도에 대한 의존성)

  • Hwang, Kyo Seung;Kim, Yoon Mi;Park, Jong Chan;Choi, Min Joo;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L (스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용)

  • Lee, Jin-Kyung;Hwang, Seung-Kuk;Lee, Sang-Pill;Bae, Dong-Su;Son, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

Measurement of Ultrasonic Field Propagation Characteristics in Biological Tissues Using a Two-dimensional Array Hydrophone (2차원 배열 수중청음기를 이용한 생체조직에서의 초음파 음장 전파특성 측정)

  • ;;;;Xiu-Fen Gong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.76-82
    • /
    • 2001
  • Because the biological tissue with inhomogeneous acoustic properties does not keep a particular shape, the measurement of propagation characteristics of ultrasonic fields by the conventional scanning method with a miniature hydrophone is difficult. In this study, a two-dimensional may hydrophone was fabricated using the PVDF (Polyvinylidene fluoride) piezo-electric film and a ultrasonic field measurement system with it was established. For the acoustic field produced by a circular plan transducer with center frequency of 2.25㎒ and 13㎜ in diameter, it was possible to make a fairly accurate field measurement using the hydrophone system. The attenuation coefficients at 2.25 ㎒ for biological tissues were 0.7∼1.3 dB/cm(average; 1.0 dB/cm) in bovine liver, 1.0∼1.8 dB/cm (average; 1.6 dB/cm) in pig liver, 0.9∼2,9 dB/cm(average: 2.1 dB/cm) in bovine muscles, 1.7∼3.3 dB/cm (average; 2.5 dB/cm) in pig muscles.

  • PDF

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

A Study on Couplant Medium Improvement for Ultrasonic Inspection System with Water Immersion to Detect Weld Defects (용접결함 검사용 수침식초음파탐상기의 매질개선연구)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Yong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • For nondestructive inspection of electron beam (EB) welding part in automotive power transmission assembly, a pulse-echo ultrasonic testing apparatus in water immersion has been applied using the ultrasonic waves with a frequency of 10MHz. However various problems have appeared during the ultrasonic inspection, which led to some significant mistakes in automatic quality evaluation of the welding parts. Experimental study showed that the state of water couplant medium containing some amount of contaminants, rusts and anti-corrosion agents had considerable influences on the reduction of ultrasonic amplitudes during wave propagation. The amplitude reduction depending on the coupling medium state could bring about some mis-diagnoses for defects in the welding parts. The results proposed that for a reliable inspection of defects in welds the state of water medium should be kept in about 15 volume fractions (vol.%) of anti-corrosion agents and in minimized contaminants.

Experimental Study on the Nondestructive Evaluation of Udimet 720Li Disc (Udimet 720Li 디스크의 비파괴 평가에 관한 실험적 연구)

  • Won, Sun-Ho;Jo, Gyeong-Sik
    • 연구논문집
    • /
    • s.28
    • /
    • pp.229-238
    • /
    • 1998
  • Materials and parts required for nondestructive testing should be evaluated using with standard block. And it is ruled that standard blocks should be fabricated from same or similar material with test specimen. In order to manufacture and export materials and parts, quality assurance system should be required. In this paper, ultrasonic characteristics of ASTM 4340 steel ultrasonic standard block are investigated for nondestructive evaluation of udimet 720Li disc. Microstructures of udimet 720Li alloy are investigated using with optical and transmission electron microscope. Also ultrasonic transit time and attenuation are measured from high power ultrasonic analysis system with phase adjustment method. Conclusively, it is proved that 4340 steel ultrasonic standard block can be use for nondestructive evaluation of udimet 720Li disc.

  • PDF

Analysis of Properties and Phantom Design Based on Plastic Hardener and Softener for Ultrasonic Imaging (초음파 영상용 플라스틱 기반의 팬텀제작 및 특성 분석)

  • Lee, G.J.;Park, D.H.;Shin, T.M.;Seo, J.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.302-306
    • /
    • 2008
  • Plastic hardener and softener based ultrasound phantoms were made in various constitutions and their acoustic properties were measured. Speed of sound is approximately $1.4\;mm/{\mu}sec$ in all the phantoms, which is about 7% less than that of in soft tissue. Attenuation coefficient is strongly dependent on the ratio between hardener and softener. In order to achieve the tissue level attenuation (0.5 dB/cm/MHz), 60% of hardener or less is required. The synthesized phantoms can be preserved for more than 6 months without structural degradation.

Ultrasonic Wave Attenuation Measurement for Damage Characterization of Concrete (콘크리트의 손상 평가를 위한 초음파 감쇠량 측정법)

  • Kwak, Hyo-Gyoung;Yim, Hong-Jae;Kim, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.85-86
    • /
    • 2009
  • A nondestructive test method based on the self-compensating frequency response function is proposed in this paper to quantitatively measure the attenuation in concrete materials. Since the proposed technique measures inherent attenuation of material itself, more stable experimental results can be expected. In advance, comparison of the experimental results to those obtained by other methods shows the repeatability and accuracy of the proposed technique.

  • PDF