• Title/Summary/Keyword: ultra-low power

Search Result 356, Processing Time 0.025 seconds

Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits

  • Wang, Wei;Xu, Min;Liu, Jichao;Li, Na;Zhang, Ting;Jiang, Sitao;Zhang, Lu;Wang, Huan;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.131-144
    • /
    • 2015
  • An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ${\Phi}_{M1}/{\Phi}_{M2}/{\Phi}_{M3}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.

Bulk Micromachined Vibration Driven Electromagnetic Energy Harvesters for Self-sustainable Wireless Sensor Node Applications

  • Bang, Dong-Hyun;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1320-1327
    • /
    • 2013
  • In this paper, two different electromagnetic energy harvesters using bulk micromachined silicon spiral springs and Polydimethylsiloxane (PDMS) packaging technique have been fabricated, characterized, and compared to generate electrical energy from ultra-low ambient vibrations under 0.3g. The proposed energy harvesters were comprised of a highly miniaturized Neodymium Iron Boron (NdFeB) magnet, silicon spiral spring, multi-turned copper coil, and PDMS housing in order to improve the electrical output powers and reduce their sizes/volumes. When an external vibration moves directly the magnet mounted as a seismic mass at the center of the spiral spring, the mechanical energy of the moving mass is transformed to electrical energy through the 183 turns of solenoid copper coils. The silicon spiral springs were applied to generate high electrical output power by maximizing the deflection of the movable mass at the low level vibrations. The fabricated energy harvesters using these two different spiral springs exhibited the resonant frequencies of 36Hz and 63Hz and the optimal load resistances of $99{\Omega}$ and $55{\Omega}$, respectively. In particular, the energy harvester using the spiral spring with two links exhibited much better linearity characteristics than the one with four links. It generated $29.02{\mu}W$ of output power and 107.3mV of load voltage at the vibration acceleration of 0.3g. It also exhibited power density and normalized power density of $48.37{\mu}W{\cdot}cm-3$ and $537.41{\mu}W{\cdot}cm-3{\cdot}g-2$, respectively. The total volume of the fabricated energy harvesters was $1cm{\times}1cm{\times}0.6cm$ (height).

Smart Parking Guidance System based on IoT Car-stoppers (IoT 카스토퍼 기반 스마트 주차안내 시스템)

  • Shim, Dongha;Yang, Ji-Hoon;Son, Jeungki;Han, Seung-Han;Lee, Hyounmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • This paper presents a smart parking guidance system based on IoT car-stoppers. The car-stopper embedding an IoT sensor module has the advantage of easy installation compared to conventional parking sensors buried in ground. The parking status data are transferred to the IoT gateway by the sequential point-to-point communication between the car-stoppers. The data transferred from the IoT gateway are stored in the web server, and parking spaces can be monitored remotely through the Android app in a smart device. An active/sleep cycle method using a watch dog timer is employed to reduce the power consumption of the battery powered car-stopper. The power consumption of the car-stopper is measured to be 80 and 25 mW at the active and sleep mode, respectively. A configuration of ultra-low-power IoT sensor module is proposed to minimize the power consumption in the sleep mode. The operation of the implemented system has been verified in a real-world parking lot.

Recent Trends of MEMS Packaging and Bonding Technology (MEMS 패키징 및 접합 기술의 최근 기술 동향)

  • Choa, Sung-Hoon;Ko, Byoung Ho;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.9-17
    • /
    • 2017
  • In these days, MEMS (micro-electro-mechanical system) devices become the crucial sensor components in mobile devices, automobiles and several electronic consumer products. For MEMS devices, the packaging determines the performance, reliability, long-term stability and the total cost of the MEMS devices. Therefore, the packaging technology becomes a key issue for successful commercialization of MEMS devices. As the IoT and wearable devices are emerged as a future technology, the importance of the MEMS sensor keeps increasing. However, MEMS devices should meet several requirements such as ultra-miniaturization, low-power, low-cost as well as high performances and reliability. To meet those requirements, several innovative technologies are under development such as integration of MEMS and IC chip, TSV(through-silicon-via) technology and CMOS compatible MEMS fabrication. It is clear that MEMS packaging will be key technology in future MEMS. In this paper, we reviewed the recent development trends of the MEMS packaging. In particular, we discussed and reviewed the recent technology trends of the MEMS bonding technology, such as low temperature bonding, eutectic bonding and thermo-compression bonding.

Electrical Properties of Rosen Type piezoelectric transformers using Low Temperature Sintering PMN-PNN-PZT ceramics (저온소결 PMN-PNN-PZT계 세라믹스를 이용한 Rosen형 압전변압기의 전기적 특성)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.53-53
    • /
    • 2008
  • Piezoelectric transformers have been widely used such as DC-DC convertor, invertor, Ballast, etc. Because, the y have some merits compared with electro-magnetic transformers such as step-up ratio, high efficiency, small size and lg hit weight, etc. Piezoelectric transformer require high electromechanical coupling factor kp in order to induce a large out put power in proportional to applied electric field. And also, high mechanical quality factor Qm is required to prevent mechanical loss and heat generation. In general, PZT system ceramics should be sintered at high temperatures between 1200 and $1300^{\circ}C$ in order to obtain complete densification. Accordingly, environmental pollution due to its PbO evaporation. Hence, to reduce its sintering temperature, various kinds of material processing methods such as hot pressing, high energy mill, liquid phase sintering, and using ultra fine powder have been performed. Among these methods, liquid phase sintering is basically an effective method for aiding densification at low temperature. In this study, In order to comparis on low temperature sintering and solid state sintering piezoelectric transformers, rosen type transformers were fabricated u sing two PZT ceramics compositions and their electrical properties were investigated.

  • PDF

A Design of Ultra Wide Band Single-to-Differential Gain Controlled Low Noise Amplifier Using 0.18 um CMOS (0.18 um CMOS 공정을 이용한 UWB 단일 입력-차동 출력 이득 제어 저잡음 증폭기 설계)

  • Jeong, Moo-Il;Choi, Yong-Yeol;Lee, Chang-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.358-365
    • /
    • 2008
  • A differential-gain-controlled LNA is designed and implemented in 0.18 um CMOS technology for $3.1{\sim}4.8GHz$ UWB system. In high gain mode, measurements show a differential power gain of $14.1{\sim}15.8dB,\;13.3{\sim}15dB$, respectably, an input return loss higher then 10dB, an input IP3 of -19.3 dBm, a noise figure of $4.85{\sim}5.09dB$, while consuming only 19.8 mW of power from a 1.8V DC supply. In low gain mode, measurements show a differential power gain of $-6.1{\sim}-4.2dB,\;-7.6{\sim}-5.6dB$, respectably, an input return loss higher then 10dB, an input IP3 of -1.45 dBm, a noise figure of $8.8{\sim}10.3dB$, while consuming only 5.4mW of power from a 1.8V DC supply.

New Decision Rules for UWB Synchronization (UWB 동기화를 위한 새로운 결정 법칙들)

  • Chong, Da-Hae;Lee, Young-Yoon;Ahn, Sang-Ho;Lee, Eui-Hyoung;Yoo, Seung-Hwan;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.192-199
    • /
    • 2008
  • In ultra-wideband (UWB) systems, conventionally, the synchronization is to align time phases of a locally generated template and any of multipath components to within an allowable range. However, the synchronization with a low-power multipath component could incur significant performance degradation in receiver operation (e.g., detection) after the synchronization. On the other hand, the synchronization with a high-power multipath component can improve the performance in receiver operation after the synchronization. Generally, the first one among multipath components has the largest power. Thus, the synchronization with the first path component can make better performance than that with low-power component in receiver operation after the synchronization, Based on which, we first propose an optimal decision rule based on a maximum likelihood (ML) approach, and then, develope a simpler suboptimal decision rule for selecting the first path component. Simulation results show that the system has good demodulation performance, which uses new synchronization definition and the proposed decision rules have better performance than that of the conventional decision rule in UWB multipath channels. Between macroblocks in the previous and the current frame. On video samples with high motion and scene change cases, experimental results show that (1) the proposed algorithm adapts the encoded bitstream to limited channel capacity, while existing algorithms abruptly excess the limit bit rate; (2) the proposed algorithm improves picture quality with $0.4{\sim}0.9$dB in average.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

Analysis of E2E Latency for Data Setup in 5G Network (5G 망에서 Data Call Setup E2E Latency 분석)

  • Lee, Hong-Woo;Lee, Seok-Pil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.113-119
    • /
    • 2019
  • The key features of 5G mobile communications recently commercialized can be represented by High Data Rate, Connection Density and Low Latency, of which the features most distinct from the existing 4G will be low Latency, which will be the foundation for various new service offerings. AR and self-driving technologies are being considered as services that utilize these features, and 5G Network Latency is also being discussed in related standards. However, it is true that the discussion of E2E Latency from a service perspective is much lacking. The final goal to achieve low Latency at 5G is to achieve 1ms of air interface based on RTD, which can be done through Ultra-reliable Low Latency Communications (URLLC) through Rel-16 in early 20 years, and further network parity through Mobile Edge Computing (MEC) is also being studied. In addition to 5G network-related factors, the overall 5G E2E Latency also includes link/equipment Latency on the path between the 5G network and the IDC server for service delivery, and the Processing Latency for service processing within the mobile app and server. Meanwhile, it is also necessary to study detailed service requirements by separating Latency for initial setup of service and Latency for continuous service. In this paper, the following three factors were reviewed for initial setup of service. First, the experiment and analysis presented the impact on Latency on the Latency in the case of 1 Data Lake Setup, 2 CRDX On/Off for efficient power, and finally 3H/O on Latency. Through this, we expect Low Latency to contribute to the service requirements and planning associated with Latency in the initial setup of the required services.

Research on Spectral Interference of Microwave Systems (마이크로웨이브 시스템의 주파수 간섭에 관한 연구)

  • Yang, Jae-Soo;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.241-249
    • /
    • 2012
  • In the many countries, research about ultra wideband wireless transmission technique is widely studied for efficient utilization of frequency resource due to a sudden increase of demand of frequency resource all over the world. The ultra wideband communication system has the some specific advantages. First, it can transmit data with high speed, second short transmission range can increase the frequency reuse rate, and finally it has high security property. However, there is a interference between ultra wideband system and other communication system but study to solve this problem is insufficient. To efficient utilization of limited frequency resource, a novel frequency avoidance technique and setup the standardization of frequency interference must need. So, the purpose of this paper is that increases communication efficiency of microwave communication systems to analyze the technical trends for transmission of the low power device, and to research the implementation and technical research of wireless access network technique of wideband communication systems.