Browse > Article
http://dx.doi.org/10.5573/JSTS.2015.15.1.131

Investigation of Hetero - Material - Gate in CNTFETs for Ultra Low Power Circuits  

Wang, Wei (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Xu, Min (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Liu, Jichao (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Li, Na (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Zhang, Ting (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Jiang, Sitao (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Zhang, Lu (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Wang, Huan (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Gao, Jian (College of Electronic Science Engineering, Nanjing University of Posts and Telecommunications)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.15, no.1, 2015 , pp. 131-144 More about this Journal
Abstract
An extensive investigation of the influence of gate engineering on the CNTFET switching, high frequency and circuit level performance has been carried out. At device level, the effects of gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. It is revealed that hetero - material - gate CNTFET(HMG - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, and is more suitable for use in low power and high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the performance parameters of circuits have been calculated and the optimum combinations of ${\Phi}_{M1}/{\Phi}_{M2}/{\Phi}_{M3}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product(PDP). We show that, compared to a traditional CNTFET - based circuit, the one based on HMG - CNTFET has a significantly better performance (SNM, energy, PDP). In addition, results also illustrate that HMG - CNTFET circuits have a consistent trend in delay, power, and PDP with respect to the transistor size, indicating that gate engineering of CNTFETs is a promising technology. Our results may be useful for designing and optimizing CNTFET devices and circuits.
Keywords
CNTFET; hetero-material-gate; HSPICE; look-up table; PDP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. F. Lu, Y. P. Lu, S. Y. Lee, et al, "Terahertz response in single-walled carbon nanotube transistor: a real-time quantum dynamics simulation", Nanotechnology, Vol. 20, no. 50, pp. 505401, 2009.   DOI   ScienceOn
2 D. Kienle, F. Leonard, "Terahertz response of carbon nanotube transistors", Phys. Rev. Lett., Vol. 103, no. 2, pp. 026601, 2000.   DOI
3 S. J. Tans, A. R. M. Verschueren, C. Dekker, "Room-temperature transistor based on a single carbon nanotube", Nature, Vol. 393, no. 7, pp. 49-52, 1998.   DOI
4 M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, et al, "Carbon nanotube computer", Nature, Vol. 501, pp. 526-530, 2013.   DOI   ScienceOn
5 M. Shulaker, J. V. Rethy, G. Hills, et al, "Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon nanotube FETs", in Proc. Int., pp. 112-113, 2013.
6 A.Hazeghi, T. Krishnamohan, H.Wong, "Schottky-barrier carbon nanotube field-effect transistor modeling", IEEE Trans. Electron Devices, Vol. 54, no. 3, pp. 439-445, Mar. 2007.   DOI   ScienceOn
7 J.Guo, M. Lundstrom, S.Datta, "Performance projections for ballistic carbon nanotube field-effect transistors", Appl. Phys. Lett., Vol. 80, no. 17, pp. 3192-3194, Apr. 2002.   DOI   ScienceOn
8 G. Fiori, G. Iannaccone, G. Klimeck, "A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry", IEEE Trans. Electron Devices, Vol.53, no. 8, pp. 1782-1788, Aug. 2006.   DOI   ScienceOn
9 A. A. Orouji, Z. Arefinia, "Detailed simulation study of a dual material gate carbon nanotube field-effect transistor", Phys. E: Low-dimensional Syst Nanostructures, Vol. 41, no. 10, pp. 552-557, Feb. 2009.   DOI
10 X. H. Liu, H. L. Zhao, T. Y. Li, et al, "Improvement on the electron transport efficiency of the carbon nanotube field effect transistor device by introducing heterogeneous-dual-metal-gate structure", Acta. Phys. Sin., Vol. 62, no. 14, pp. 147308, 2013.
11 Z. Arefinia, A. A. Orouji, "Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension", IEEE Trans. Device Mater Reliab., Vol. 9, no. 2, pp. 237-243, Jun. 2009.   DOI   ScienceOn
12 T. S. Xia, L. F. Register, S. K. Banerjee, "Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect", Solid-State Electron, Vol. 49, no. 5, pp. 860-864, May. 2005.   DOI   ScienceOn
13 J. Guo, S. Hasan, A.Javey, et al, "Assessment of high- frequency performance potential for carbon nanotube transistors", IEEE Trans. Nanotechnol., Vol. 4, no. 6, pp. 715-721, Nov. 2005.   DOI   ScienceOn
14 L. Chen, D. L. Pulfrey, "Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance", Solid-State Electron, Vol. 53, no. 9, pp. 935-939, 2009.   DOI   ScienceOn
15 W. Wang, X. Yang, N. Li, et al, "The high-frequency performance of hetero-material-gate CNTFETs with gate underlap", Fullerenes, Nanotubes and Carbon Nanostructures, 2014.
16 W. Long, H. Ou, J. Kuo, and K. K. Chin, "Dual-material gate(DMG) field effect transistors" IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 865-870, May 1999.   DOI   ScienceOn
17 I. Polishchuk, P. Ranade, T. J. King, and C. Hu, "Dual work function metal gate CMOS technology using metal interdiffusion", IEEE Electron Device Lett., vol. 22, no. 9, pp. 444-446, Sep. 2001.   DOI   ScienceOn
18 Ji Cao, Adrian M. Lonescu, "Study on dual-lateral-gate suspended-body single-walled carbon nanotube field-effect transistors", Solid-State Electron, Vol. 74, pp.121-125, 2012.   DOI   ScienceOn
19 Z. Zhang, S. C. Song, C. Huffman, et al, "Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process", Electrochem. Solid - State Lett., Vol. 8, no. 10, pp. G271-G274, 2005.   DOI   ScienceOn
20 S. C. Song, Z. B. Zhang, M. M. Hussain, et al, "Highly manufacturable 45 nm LSTP CMOSFETs using novel dual high-k and dual metal gate CMOS integration" , VLSI Symp. Tech. Dig., pp. 13-14, 2006.
21 Dinh Sy Hien, Nguyen Thi Luong, Thi Tran Anh Tuan, and Dinh Viet Nga, "3D Simulation of coaxial carbon nanotube field effect transistor", Journal of Physics: Conference Series, Vol. 187, no. 1, pp. 012061, 2009.
22 Orouji A A, Arefinia Z, "Detailed simulation study of a dual material gate carbon nanotube field-effect transistor", Phys E: Low-dimensional Syst. Nanostructures, Vol. 41, no. 4, pp. 552-557, Feb. 2009.   DOI
23 Datta S, "Nanoscale device modeling: the Green's function method", Superlatt Microstruct, Vol. 28, no. 4, pp. 253-278, Oct. 2000.   DOI   ScienceOn
24 W. Wang, T. Zhang, L. Zhang, et al, "High-frequency and switching performance investigations of novel lightly doped drain and source hetero-material-gate CNTFET", Materials Science in Semiconductor Processing, Vol. 21, pp. 132-139, 2014.   DOI   ScienceOn
25 Koswatta S O, Lundstrom M S, Nikonov D E, "Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling", Nano. Lett., Vol. 7, no. 5, pp. 1160-1164, 2007.   DOI   ScienceOn
26 Hien D. S., Luong N. T., Tuan T. T. A., et al, "3D Simulation of coaxial carbon nanotube field effect transistor", Journal of Physics, Vol. 198, no. 1, pp. 012061, 2009.
27 Koswatta S O, Lundstrom M S, Anantram M P, et al, "Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors", Applied Phy. Lett., Vol. 87, no. 25, pp. 253107, 2005.   DOI   ScienceOn
28 Arefinia Z., "Investigation of the performance and band-to-band tunneling effect of a new double-halo-doping carbon nanotube field-effect transistor", Phys E: Low-dimensional Syst. Nanostructures, Vol. 41, no. 10, pp. 1767-1771, 2009.   DOI
29 J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors", Phy. Rev. Lett., Vol. 93, no. 19, pp. 2004.
30 R. Yousefi, M. Shabani, M. Arjmandi, and S. S. Ghoreishi, "A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET", Superlattices and Microstructures, Vol. 60, pp. 169-178, Aug. 2013.   DOI   ScienceOn
31 A. Naderi, P. Keshavarzi, "Novel carbon nanotube field effect transistor with graded double halo channel", Superlattices and Microstructures, Vol. 51, no. 5, pp. 668-679, May. 2012.   DOI   ScienceOn
32 Chris Dwyer, Moky Cheung, and Daniel J. Sorin, "Semi-empirical spice models for Carbon Nanotube FET logic", IEEE Conference on Nanotechnology, pp.386-388, 2004.
33 Burke PJ, "An RF circuit model for carbon nanotubes", IEEE Trans. Nanotechnol., pp. 393-396, 2002.
34 Yamacli S, Avci M, "Accurate SPICE compatible CNT interconnect and CNTFET models for circuit design and simulation", Mathematical and Computer Modelling, Vol. 58, no. 1, pp. 368-378, 2013.   DOI   ScienceOn
35 International Technology Roadmap for Semiconductors, available at http://public.itrs.net.
36 Rosenblatt S, Yaish Y, Park J, et al, "High performance electrolyte gated carbon nanotube transistors", Nano. Let., Vol. 2, no. 8, pp. 869-872, 2002.   DOI   ScienceOn
37 Guo J, Goasguen S, Lundstrom M, et al, "Metal-insulator-semiconductor electrostatics of carbon nanotubes", Applied Physics Letters, Vol. 81, no. 8, pp. 1486-1488, 2002.   DOI   ScienceOn
38 Sheng Lin, Yong-Bin Kim, and Fabrizio Lombardi, "Design of a CNTFET-Based SRAM Cell by Dual-Chirality Selection", IEEE Trans. Nanotechnol, Vol. 9, no. 1, pp. 30-37, Jan. 2010.   DOI   ScienceOn