• Title/Summary/Keyword: ultra-high-degree

Search Result 86, Processing Time 0.026 seconds

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application (1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don;Jeong, Jun-Kou;Kim, Dong-Wha
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete (초고강도 콘크리트의 수축 균열 특성 및 구속도 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • The concrete cracking from the restrained stress caused by the shrinkage may play significant cause of deterioration of concrete structures by allowing the permeation of sulphate and chloride ions which in turn triggers corrosion of steel reinforcement. In particular, the cracking becomes more critical as water binder ratio (W/B) is reduced and concrete strength increases. Therefore, it needs to evaluate correctly the comprehensive shrinkage behavior of concrete with high strength: high-strength concrete (HSC), ultra-highstrength concrete (UHSC). The unrestrained shrinkage tests, however, cannot estimate the net shrinkage effectively which affects cracking after full development of strength and stiffness because it does not consider the degree of restraint, strength development, stress relaxation, and so on. Therefore, in this study, both free and restrained shrinkage tests with variables of W/B (W/B of 30, 25 and 16%) and admixtures (fly ash (FA) and granulated blast-furnace slag (BFS)) for HSC, very-high-strength concrete (VHSC) and UHSC were performed. The test results indicated that the autogenous shrinkage and total shrinkage at drying condition were reduced as W/B increased and FA, BFS were added, and the cracking behavior was suppressed as W/B increased and FA was added.

Investigation on the Flexural and Shear Behavior of Fiber Reinforced UHSC Members Reinforced with Stirrups (전단철근과 강섬유로 보강된 초고강도 콘크리트 부재의 휨 및 전단 거동에 관한 연구)

  • Yuh, Ok-Kyung;Ji, Kyu-Hyun;Bae, Baek-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.152-163
    • /
    • 2019
  • In this paper, effect of steel fiber inclusion, compressive strength of matrix, shear reinforcement and shear span to depth ratio on the flexural behavior of UHPFRC(Ultra High Performance Fiber Reinforced Concrete) were investigated with test of 10-UHPFRC beam specimens. All test specimens were subjected to the flexural static loading. It was shown that steel fiber significantly improve the shear strength of UHPFRC beams. 2% volume fraction of steel fiber change the mode of failure from shear failure to flexural failure and delayed the failure of compressive strut with comparatively short shear span to depth ratio. UHPFRC beams without steel fiber had a 45-degree crack angle and fiber reinforced one had lower crack angle. Shear reinforcement contribution on shear strength of beams can be calculated by 45-degree truss model with acceptable conservatism. Using test results, French and Korean UHPFRC design recommendations were evaluated. French recommendation have shown conservative results on flexural behavior but Korean recommendation have shown overestimation for flexural strength. Both recommendations have shown the conservatism on the flexural ductility and shear strength either.

A Feature Point Extraction and Identification Technique for Immersive Contents Using Deep Learning (딥 러닝을 이용한 실감형 콘텐츠 특징점 추출 및 식별 방법)

  • Park, Byeongchan;Jang, Seyoung;Yoo, Injae;Lee, Jaechung;Kim, Seok-Yoon;Kim, Youngmo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.529-535
    • /
    • 2020
  • As the main technology of the 4th industrial revolution, immersive 360-degree video contents are drawing attention. The market size of immersive 360-degree video contents worldwide is projected to increase from $6.7 billion in 2018 to approximately $70 billion in 2020. However, most of the immersive 360-degree video contents are distributed through illegal distribution networks such as Webhard and Torrent, and the damage caused by illegal reproduction is increasing. Existing 2D video industry uses copyright filtering technology to prevent such illegal distribution. The technical difficulties dealing with immersive 360-degree videos arise in that they require ultra-high quality pictures and have the characteristics containing images captured by two or more cameras merged in one image, which results in the creation of distortion regions. There are also technical limitations such as an increase in the amount of feature point data due to the ultra-high definition and the processing speed requirement. These consideration makes it difficult to use the same 2D filtering technology for 360-degree videos. To solve this problem, this paper suggests a feature point extraction and identification technique that select object identification areas excluding regions with severe distortion, recognize objects using deep learning technology in the identification areas, extract feature points using the identified object information. Compared with the previously proposed method of extracting feature points using stitching area for immersive contents, the proposed technique shows excellent performance gain.

Crystallization and Optical Properties of Transparent AZO Thin Films (AZO 투명전극의 결정성과 광학적 특성)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.212-218
    • /
    • 2012
  • The optical properties of AZO thin films prepared by the RF mangnetron sputtering system was studied to research the dependance of chemical properties of substrate. The substrate was the SiOC film deposited by Inductively coupled plasma chemical vapor deposition with various gas flow rate of $O_2$ and Ar (DMDMOS). In accordance with the increase of Ar gas flow rates, the Si-O bond in the SiOC film increased and then progressed the amorphism. The roughness of AZO grown on SiOC film with high degree of amorphism decreased and then improved the flatness of surfaces. Moreover, the ultra violet emission with high intensity was spontaneously induced in the AZO film growed on SiOC film with high degree of amorphism.

Synthesis of Oxide Ceramic Powders by Polymerized Organic-Inorganic Complex Route

  • Lee, Sang-Jin;Lee, Chung-Hyo;Waltraud M. Kriven
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.151-163
    • /
    • 2000
  • A polymerized organic-inorganic complexation route is introduced for the synthesis of oxide ceramic powders. Polyvinyl alcohol was used as the organic carrier for precursor ceramic gel. Porous and soft powders, which have a high specific surface area, were obtained after calcinating the aerated precursors. The PVA content and its degree of polymerization had a significant influence on the homogeneity of the final powder. In particular, attrition milling process with the porous powder resulted in ultra-fine particles. In the case of the preparation of cordierite powder, nano-size powder, which has a high specific surface area of 181 ㎡/g, was obtained by the milling process. The complexation route was also applied to the synthesis of unstable phase in room temperature like beta-cristobalite, high temperature form of silica.

  • PDF

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Performance Evaluation of Polymer Insulator using Tracking Wheel and Multi-Aging Test (트래킹 휠과 복합열화시험에 의한 폴리머 애자의 성능 평가)

  • 조한구;안명상;한세원;허종철;이운용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.119-122
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. Polymer insulators are a relatively new technology, but their expected life is still unknown. Therefore these estimating technique are very important. Their life time is related to weathering and operating condition. Multi-aging test is requested because aging factor is occurred by multi-aging than unique aging. The aging test about polymer insulators have mainly carried out by IEC 61109. This paper presents multi-stress chamber experiments and tracking wheel test to examine the tracking and erosion performance of polymer insulator for transmission. Multi-stress testing is able to demonstrate deficiencies of polymer insulator materials and designs, including the nature of interfaces in insulation design. We have investigated IEC 61109 Annex C (5000h aging test) and CEA tracking wheel test as test methods of artificial accelerated aging. The aging degree of polymer insulator is estimated by leakage current, measurement of hydrophobicity degree, damage conditions of insulator surface, withstand voltage test etc.

  • PDF

Design of Ultra-light Robot-arm Capable of Carrying Heavy Weight (고중량 이송 가능한 초경량 로봇 팔의 설계)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Leem, Kun-Wha;Lee, Jong-Hoon;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.343-350
    • /
    • 2008
  • In this paper, a six degree-of-freedom robot arm which is very light but capable of delivering heavy loads was studied. The proposed robot arm has much higher load capacity than conventional robot arms actuated by motors with speed reducers such as the harmonic drive since a new type of robot actuator based on a closed chain mechanism driven by the ball screw was adopted. Analysis on the design scheme and on the mechanism of the joint actuator of the robot arm were made. Since the robot arm was designed very light, it has deflection in the links. To analyze this, a finite element analysis on the structure of the designed robot links was made using ANSYS software. Verifying experiments on the performance of high load capacity of the robot arm was performed by loading heavy weights on the robot arm. Through experiments. the correctness of the numerical analysis was also verified.