• Title/Summary/Keyword: ultra-high-degree

Search Result 84, Processing Time 0.021 seconds

Numerical Computation of Ultra-High-Degree Legendre Function

  • Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 2007
  • The computations of an ultra-high degree associated Legendre functions and its first derivative up to degree and order of 10800 are reported. Not only the magnitude of orders for the ultra-high degree calculation is presented but the numerical stability and accuracy of the computed values are described in detail. The accuracy on the order of $10^{-25}\;and\;10^{-15}$ was obtained for the values of Legendre function and the first derivatives of Legendre functions, respectively. The computable highest degree and order of Legendre function in terms of latitudes and the linear relationship between the magnitude of the function with respect to degrees and orders is found. It is expected that the computed Legendre functions contribute in many geodetic and geophysical applications for simulations as well as theoretical verifications.

Performance Analysis of Viewport-dependent Tiled Streaming on 16K Ultra High-quality 360-degree Video (16K 초고화질 360도 영상에서의 사용자 시점 기반 타일 스트리밍 성능 검증)

  • Jeong, Jong-Beom;Lee, Soonbin;Kim, Inae;Ryu, Eun-Seok
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Ultra high-quality and ultra high-resolution omnidirectional 360-degree video streaming is needed to provide immersive media through head-mounted display(HMD) in virtual reality environment, which requires high bandwidth and computational complexity. One of the approaches avoiding these problems is to apply viewport-dependent selective streaming using tile-based segmentation method. This paper presents a performance analysis of viewport-dependent tiled streaming on 16K ultra high-quality 360-degree videos and 4K 360-degree videos which are widely used. Experimental results showed 42.47% of bjotegaard delta rate(BD-rate) saving on 16K ultra high-quality 360-degree video tiled streaming compared to viewport-independent streaming while 4K 360-degree video showed 26.41% of BD-rate saving. Therefore, this paper verified that tiled streaming is more efficient on ultra-high quality video.

The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool (초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상)

  • Kim, Jae-Yeol;Kwak, Nam-Su
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.

Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea (남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석)

  • Huang, He;Yun, Hong Sic;Lee, Dong Ha;Jeong, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.161-166
    • /
    • 2009
  • High-resolution, high-precision ultra-high degree earth gravitational model are significant for the development of geodesy, geophysics, geodynamics and oceanography. In this research, we introduces the ultra-high earth gravitational model EGM2008 recently announced by U.S. NGA, reviews the issues and status of the ultra-high degree gravitational model development, and analyzes the accuracy of the gravitational model in Korea. First, EGM2008 is compared with the gravitational model EGM96 and Korea high-precision hybrid geoid model KGEOID08. In addition, the absolute accuracy is evaluated by ellipsoid height and orthometric height of a satellite geodetic reference point. Overall, the results show a similar accuracy between EGM2008 and KGEOID08. Thus, EGM2008 will be helpful for the future development of regional geoid and analysis of global gravity field.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Evaluation of Ultra-high and High Degree Geopotential Models for Improving the KGEOID98

  • Yun, Hong-Sic
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Recent development of ultra-high and high degree Earth geopotential model opens new avenues to determine the Earth gravity field through spectral techniques to a very high accuracy and resolution. However, due to data availability, quality, and type, the performance of these new EGMs needs to be validated in regional or local scale geoid modeling. For establishing the best reference surface of geoid determination, recent geopotential models are evaluated using GPS/Leveling-derived geometric geoid and the Korean gravimetrical GEOID (KGEOID98) developed by National Geography Institute in 1998. Graphical and statistical comparisons are made for EGM96, GFZ97, PGM2000A and GPM98A models. The mean and standard deviation of difference between geometric height and geoid undulation calculated from GFZ97 are $1.9\pm{46.7}\;cm$. It is shown that the GFZ97 and the GPM98A models are better than the others in the Korean peninsula because the GFZ97 has a smaller bias. It means that the KGEOID98 needs some improvement using the GFZ97 instead of EGM96.

  • PDF

Modeling of temperature history in the hardening of ultra-high-performance concrete

  • Wang, Xiao-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2014
  • Ultra-high-performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder ratios are 0.15 to 0.20 with 20 to 30% silica fume. In the production of ultra-high performance concrete, a significant temperature rise at an early age can be observed because of the higher cement content per unit mass of concrete. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of ultra-high performance concrete. The heat evolution rate of UHPC is determined from the contributions of cement hydration and the pozzolanic reaction. Furthermore, by combining a blended-cement hydration model with the finite-element method, the temperature history in the hardening of UHPC is evaluated using the degree of hydration of the cement and the silica fume. The predicted temperature-history curves were compared with experimental data, and a good correlation was found.

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

An Experimental Study on the Compressive Strength of Ultra High Strength Concrete with Vacuum Water Absorbing Curing (진공포수양생을 적용한 초고강도 페이스트의 압축강도 발현에 관한 실험적 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.27-28
    • /
    • 2019
  • In this study, the characteristics of compressive strength of ultra high strength concrete supplied with moisture from outside by vacuum water absorbing curing method were investigated. Specimens were prepared by replacing the binder(Silifa fume and GGBS) by 25 wt% with respect to the weight of cement at W/B 0.16. Each specimen was subjected to water Vacuum absorbing curing time 0 min, 30 min, 60 min, 90 min and 120 minutes immediately after the demolding. Curing was performed at $20^{\circ}C$ Air-dry curing, $90^{\circ}C$ steam curing, $90^{\circ}C$ steam curing and $180^{\circ}C$ autoclave curing. Experimental results showed that water absorbing degree increased with increasing water absorbing curing time, and BS25 sample had higher water absorbing degree than SF25 sample at same time. Compressive strength tended to increase up to about 40% in water absorbing degree, but compressive strength decreased again in water absorbing more than 40%.

  • PDF

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (II) Evaluation of Restrained Shrinkage Characteristics and Prediction of Degree of Restraint (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (II) 구속 수축 특성 평가 및 구속도 예측)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.317-325
    • /
    • 2012
  • In this study, to evaluate the shrinkage behavior of ultra high performance fiber reinforced concrete (UHPFRC) under restrained condition, restrained shrinkage test was performed according to ring-test mostly used at home and abroad. Ring-test was performed with the various thicknesses and radii of inner steel ring to give different degree of restraint. Free shrinkage and tensile tests were carried out simultaneously to estimate the degree of restraint, stress relaxation, and shrinkage cracking potential. Test results indicated that the average steel strain and residual tensile stress were reduced as the thicker inner steel ring was used, whereas degree of restraint was increased. The steel strain, residual tensile stress and degree of restraint were hardly affected by the size of radius of inner ring. In the case of all ring specimens, shrinkage crack did not occur because the residual tensile stress was lower than the tensile strength. About 39~65% of the elastic shrinkage stress was relaxed by the sustained interface pressure, and the maximum relaxed stress was increased as the thicker inner ring was applied. Finally, the degree of restraint with age was predicted by performing non-linear regression analysis, and it was in good agreement with the test results.