• Title/Summary/Keyword: ultra high-speed

Search Result 431, Processing Time 0.03 seconds

A Study on the Video Compression Pre-processing Method for Video Transmission and Target Detection in Ultra-narrowband Environment (초협대역 환경에서 영상전송 및 표적탐지를 위한 영상압축 전처리 방법에 대한 연구)

  • Im, Byungwook;Baek, Seungho;Jun, Kinam;Kim, Dokyoung;Jung, Juhyun;Kim, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Due to the continued demand for high-definition video, video compression technology is steadily developing and the High Efficiency Video Coding standard was established in 2013. However, despite the development of this compression technology, it is very difficult to smoothly transmit VGA-level videos in Ultra-narrowband environments. In this paper, the target information preprocessing algorithm is presented for smooth transmission of target images moving in forest or open-terrain in Ultra-narrowband environment. In addition, for algorithm verification, the target information preprocessing algorithm was simulated and the simulated results were compared with the video compression result without the algorithm being applied.

Machinability evaluation of non-coated end mill tool fabricated by ultra-fine WC (초미립 WC로 제작된 무코팅 엔드밀 공구의 가공성 평가)

  • Kim D.H.;Kwon D.H.;Kang I.S.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.13-14
    • /
    • 2006
  • The quality of tool material is very important factor in machining evaluation. The characteristics of tungsten carbide, such as grain size and hardness, and density are depending on the variation of Co composition and WC size. In this study, the non-coated end mill which is made of ultra-fine tungsten carbide is investigated by measuring tool wear and tool lift test. The machining test is conducted with high hardened workpiece under high-speed cutting condition.

  • PDF

The Depression of High Frequency Vibration of the Ultra-Slim-Height Optical Pick-up Actuator Using the Re-Design of Modal Parameters (모달파라미터 재설계를 통한 초슬림형 광픽업 액추에이터의 고주파 진동저감)

  • 송병륜;조원익;강형주;이영빈;성평용;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.770-774
    • /
    • 2003
  • We propose the re-design method of modal parameters to depress the 2nd resonance peak of the ultra-slim-height optical pick-up actuator. With the addition of tile counter mode near the 2nd resonance frequency, we can achieve the gain margin which is sufficient to meet the system requirement. It would alleviate the burden of the additional filter for a high-speed drive.

  • PDF

Development of Ultra-Wideband Antennas

  • Chen, Zhi Ning
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2013
  • The ultra-wideband (UWB) spectrum available for commercial applications has offered us an opportunity to achieve high-speed wireless communications and high-accuracy location applications. As one of key research areas in UWB technology, a lot of innovative broadband and miniaturization techniques for UWB antennas have been greatly invented and developed for years. This paper reviews the development of UWB antenna design in the past decade. Starting with a brief introduction of the specific requirements and promising applications of UWB systems, the unique design challenges of UWB antennas are highlighted. Next, the important milestones of UWB antenna designs are briefed. After that, a variety of planar UWB antennas invented for broadband operation, miniaturization, and multiple functions are introduced. Last, the comments on the development of UWB antennas in future are shared.

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

Review on RF Performance of Ultra Wide Band Device

  • Lee, Il-Kyoo;Kang, Bub-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.34-39
    • /
    • 2007
  • UWB(Ultra Wide Band) system for high speed and high accurate location has been studying actively. This paper presents the design and implementation of RF transceiver for DS-CDMA(Direct Sequence-Code Division Multiple Access) UWB device. Major components of RF transceiver such as Low Noise Amplifier(LNA) and Band Pass Filter(BPF) are designed and then fabricated to meet wideband characteristics. The RF transceiver was implemented by the use of the fabricated components and commercial devices after carrying out performance simulation. Through the performance evaluation of the UWB RF transceiver with W-CDMA signal, the approach of design, implementation and evaluation of RF transceiver which is available to DS-CDMA UWB system is verified.

A comparison study of the effects of handpiece speed on teeth in debonding procedure (탈접착 후처치시 핸드피스(handpiece) 속도가 치아에 미치는 영향에 대한 비교 연구)

  • Park, Soo-Byung;Kim, Gu-Ho;Ha, Man-Hee
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.83-91
    • /
    • 2004
  • This study was performed to examine treatment efficiency and patient discomfort rate according to used handpiece speed in clean-up technique. Brackets were bonded to extracted human premolar(50 teeth). After debonding, 50 extracted human premolar were divided Into each two groups(low speed handpiece group with tungsten carbide bur and high speed handpiece group with ultra-fine diamond finishing bur) of 25 according to used handpiece speed in clean-up technique. In clean-up procedure, teeth vibration and pulp thermal changes were measured. After clean-up procedure, the enamel surfaces of randomly selected 10 teeth from each two groups were taken by SEM and evaluated. The findings of this study were as follows ; 1. During resin removal, tooth vibrations of various amplitude in low speed handpiece group were more than those of high speed handpiece. 2. The pulpal thermal changes of high speed handpiece group were significantly higher than those of low speed handpiece group, also the resin removal time in high speed handpiece group was almost as twice as in low speed handpiece group. 3. The figures of SEM to enamel surfaces after resin removal showed that notches and resin remnants in high speed handpiece group were more than those in low speed handpiece group.

Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe (초정밀 가공기의 실시간 운동오차 및 열변형오차 보상)

  • Kwac Lee-Ku;Kim Hong-Gun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

Thermal Design and Experimental Test of a High-Performance Hot Chuck for a Ultra Precision Flip-Chip Bonder (초정밀 플립칩 접합기용 고성능 가열기의 열적 설계 및 시험)

  • Lee Sang-Hyun;Park Sang-Hee;Ryu Do-Hyun;Han Chang-Soo;Kwak Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.957-965
    • /
    • 2006
  • A high-performance hot chuck is designed as a heating device for an ultra-precision flip-chip bonder with infrared alignment system. Analysis of design requirements for thermal performance leads to a radiative heating mechanism employing two halogen lamps as heating source. The heating tool is made of silicon carbide characterized by high thermal diffusivity and small thermal expansion coefficient. Experimental tests are performed to assess heat-up performance and temperature uniformity of the heating tool. It is revealed that the initial design of hot chuck results in a good heat-up speed but there exist a couple of troubles associated with control and integrity of the device. As a means to resolve the raised issues, a revised version of heating tool is proposed, which consists of a working plate made of silicon carbide and a supporting structure made of stainless steel. The advantages of this two-body heating tool are discussed and the improved features are verified experimentally.

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.