• Title/Summary/Keyword: ultimate tensile strain

Search Result 176, Processing Time 0.021 seconds

Ductility Enhancement in Sn-40Bi-X Alloys by Minor Additions of Alloying Elements (합금원소 첨가에 의한 Sn-40Bi-X 합금의 연성 향상)

  • Kim, Ju-Hyung;Lee, Jong-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.211-220
    • /
    • 2011
  • To improve the low ductility and high strain-rate sensitivity in Sn-Bi based solder alloys, the influences of the minor additions of alloying elements (Ag, Mn, In) were investigated. The strain-stress curves of various Sn-40Bi(-X) alloys, including a pre-suggested Sn-40Bi-0.1Cu composition were measured using a tensile testing machine. As a result, the elongation and ultimate tensile strength (UTS) values were compared. The small addition (0.5 wt.%) of Ag significantly enhanced the ductility and high strain-rate sensitivity of the alloys at strain rates of $10^{-4}$ to $10^{-2}\;s^{-1}$ mainly due to the increase and refinement of eutectic lamellar structures. The microstructure change increased the area of grain boundaries, thus ameliorating the grain boundary sliding mode. It was also found that Mn is an effective element in enhancing the ductility, especially at the strain rates of $10^{-3}$ to $10^{-2}\;s^{-1}$ The enhancement is likely attributed to the fine and homogeneous microstructure in the alloys containing Mn.

A Comparative Study of Computer Simulation using High-Speed Tensile Test Results with Actual Crash Test Results of DP Steels (복합조직강의 고속인장 결과를 이용한 컴퓨터 전산모사와 실제 충돌시험 결과와의 비교 연구)

  • Bang, Hyung Jin;Choi, Il Dong;Kang, Seong Geu;Moon, Man Been
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.873-882
    • /
    • 2012
  • Dual Phase (DP) steel which has a soft ferrite phase and a hard martensite phase reveals both high strength and high ductility and has received increased attention for use in automotive applications. To conduct structural analysis to verify vehicle safety, highly credible experimental results are required. In this study, tensile tests were performed in a strain rate range from $10^{-4}/s$ to 300/s for Sink Roll-Less (SRL) hot-dip metal coated sheets. Collision properties were estimated through simulation by LS-DYNA using the stress-strain curve obtained from the tensile test. The simulation results were compared with the actual crash test results to confirm the credibility of the simulation. In addition, a tensile test and a crash test with 2% prestrain and a baking (PB) specimen were evaluated identically because automotive steel is used after forming and painting. The mechanical behaviors were improved with an increasing strain rate regardless of the PB treatment. Thus, plastic deformation with an appropriate strain rate is expected to result in better formability and crash characteristics than plastic deformation with a static strain rate. The ultimate tensile strength (UTS) and absorbed energy up to 10% strain were improved even though the total elongation decreased after PB treatment, The results of the experimental crash test and computer simulation were slightly different but generally, a similar propensity was seen.

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.

Evaluation of the Effect of Coupler on the Ductility of Rebar by Uniaxial Tensile Test (1축 인장시험을 통한 커플러가 철근 연성도에 미치는 영향 평가)

  • Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan;Jung, Chi-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Recently, various reinforced concrete joints have been used in reinforced concrete structures. Therefore, it is important to grasp the tensile properties of the spliced rebar. In this study, uniaxial tensile tests were conducted on Grade 60 D22(#7), D29(#9), and two kinds of couplers manufactured according to ASTM A615 standard for evaluating ductility of coupler joints. The strain was measured using an image processing method more accurate and capable of measuring at various points freely. As the result of uniaxial tensile test, it was possible to calculate the stress-strain relationship and the longitudinal strain distribution according to the stress stages and it was founded that the average strain becomes lower as more occupying the coupler joint portions in the same gauge length. In addition, the empirical equations are proposed to account for the effect of the length of the coupler on the ultimate strain and the rupture strain.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

Effect of post processing of digital image correlation on obtaining accurate true stress-strain data for AISI 304L

  • Angel, Olivia;Rothwell, Glynn;English, Russell;Ren, James;Cummings, Andrew
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3205-3214
    • /
    • 2022
  • The aim of this study is to provide a clear and accessible method to obtain accurate true-stress strain data, and to extend the limited material data beyond the ultimate tensile strength (UTS) for AISI 304L. AISI 304L is used for the outer construction for some types of nuclear transport packages, due to its post-yield ductility and high failure strain. Material data for AISI 304L beyond UTS is limited throughout literature. 3D digital image correlation (DIC) was used during a series of uniaxial tensile experiments. Direct method extracted data such as true strain and instantaneous cross-sectional area throughout testing such that the true stress-strain response of the material up to failure could be created. Post processing of the DIC data has a considerable effect on the accuracy of the true stress-strain data produced. Influence of subset size and smoothing of data was investigated by using finite element analysis to inverse model the force displacement response in order to determine the true stress strain curve. The FE force displacement response was iteratively adapted, using subset size and smoothing of the DIC data. Results were validated by matching the force displacement response for the FE model and the experimental force displacement curve.

Evaluation of Tensile Properties of Cast Stainless Steel Using Ball Indentation Test

  • Kim Jin Weon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.237-247
    • /
    • 2004
  • To investigate the applicability of automated ball indentation (ABI) tests in the evaluation of the tensile properties of cast stainless steel (CSS), ABI tests were performed on four types of unaged CSS and on 316 stainless steel, all of which had a different microstructure and strength. The reliability of ABI test data was analyzed by evaluating the data scattering of the ABI test and by comparing tensile properties obtained from the ABI test and the tensile test. The results show that the degree of scattering of the ABI test data is reasonably acceptable in comparison with that of standard tensile data, when two points data that exhibit out-of-trend are excluded from five to seven points data tested on a specimen. In addition, the scattering decreases slightly as the content of ${\delta}-ferrite$ in CSS increases. Moreover, the ABI test can directly measure the flow parameters of CSS with error bounds of about ${\pm}10\%$ for the ultimate tensile stress and the strength coefficient, and about ${\pm}15\%$ for the yield stress and the strain hardening exponent. The accuracy of the ABI test data is independent of the amount of ${\delta}-ferrite$ in the CSS.

Ultimate Fracture Strength Analysis of Initially Cracked Plate (초기균열을 가진 판의 최종파괴 강도해석)

  • 백점기;서흥원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.133-138
    • /
    • 1991
  • The aim of the present paper is to develop a computer program predicting ultimate fracture strength of initially cracked structure under monotonically increasing external loads. For this purpose, two kinds of 3-D isoparametric solid elements, one 6-node wedge element and another 8-node brick element are formulated along the small deformation theory. Plasticity in the element is checked using von Mises' yield criterion. Elasto-plastic stiffness matrix of the element is calculated taking account of strain hardening effect. If the principal strain at crack tip which is one nodal point exceeds the critical strain dependin on the material property, crack tip is supposed to be opened and the crack tip node which was previously constrained in the direction perpendicular to the crack line is released. After that, the crack lay be propagated to the adjacent node. Once a crack tip node is fractured, the energy of the newly fractured node should be released which is to be absorbed by the remaining part. The accumulated reaction force which was carried by the newly fractured node so far is then applied in the opposite direction. During the action of crack tip relief force, since unloading may be occured in the plastic element, unloading check should be made. If a plastic element unloads, elastic stress-strain equation is used in the calculation of the stiffness matrix of the element, while for a loading element, elasto-plastic stress-strain equation is continuously used. Verification of the computer program is made comparing with the experimental results for center cracked panel subjected to uniform tensile load. Also some factors affecting ultimate fracture strength of initially cracked plate are investigated. It is concluded that the computer program developed here gives an accurate solution and becomes useful tool for predicting ultimate fracture load of initially cracked structural system under monotonically increasing external loads.

  • PDF

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF