• 제목/요약/키워드: ultimate strain

검색결과 595건 처리시간 0.037초

고밀도 STS316L 합금 적층 성형체의 제조공정 최적화 및 인장 특성 연구 (Study on the optimization of additive manufacturing process parameters to fabricate high density STS316L alloy and its tensile properties)

  • 송영환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.288-293
    • /
    • 2023
  • STS316L 합금의 Laser powder bed fusion 공정 최적화를 위하여 Laser power, Scan speed 및 Hatching distance의 공정조건을 제어하면서 투입 레이저 에너지 밀도와 조형체의 상대밀도와의 상관관계를 연구했고, 최적조건으로 제작된 조형체의 적층 방향에 따른 인장특성 변화를 분석했다. STS316L 분말을 에너지밀도가 55.6 J/mm3, 83.3 J/mm3 및 111.1 J/mm3인 조건에서 적층 성형한 결과, 투입 레이저 에너지밀도가 83.3 J/mm3이며, Power 및 Scan speed 각각 225 W, 1000 mm/s인 조건에서 가장 안정적으로 고밀도 STS316L 샘플을 제작할 수 있었다. 최적공정조건을 이용해 적층 방향과 인장방향이 각각 0°, 45°, 90°인 인장시험편을 제작하여 인장특성을 비교한 결과 적층 방향과 인장방향이 수직인 시험편의 항복강도, 인장강도 및 연신율이 가장 우수한 것이 확인되었다. 적층 방향과 수직 방향으로의 이방성을 가지는 기공 및 Lack of fusion 결함이 응력집중을 야기하여 인장특성을 열화 시키기 때문인 것으로 추정된다.

토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구 (Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock)

  • 홍지원;조승우;김오홍;정미랑;김현;박경목;이경인;윤호성
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.460-467
    • /
    • 2016
  • 사상체 토착 남세균을 경상남도 합천군 합천호의 수화시료로부터 무균적으로 분리하였으며, 형태적·분자적 동정 결과 림노트릭스 속에 속하는 것으로 밝혀졌다. 따라서, 본 남세균 균주는 림노트릭스 속 KNUA012 균주로 명명하였으며, 분리균주의 최적생장 온도는 섭씨 25도였다. 지질성분 분석 결과, 에스테르 교환반응을 거치지 않고 직접 연료로 사용할 수 있는 펜타데칸(C15H32)과 헵타데칸(C17H36)과 같은 알칸들이 본 균주에 의해 광독립 영양적으로 생합성 된다는 것이 밝혀졌다. 또한 알칸 생합성에 관여하는 유전자들이 본 남세균 내에 존재하는 것을 발견하였다. 일반적인 미세조류 바이오디젤 구성성분으로 알려진 미리스트올레산(C14:1), 팔미트산(C16:0) 및 팔미톨레산(C16:1) 역시 KNUA012 균주에 의해 주요 지방산 성분으로서 생산되는 것으로 확인되었다. 근사분석 결과 KNUA012 균주의 휘발성물질 함량은 86.0%였으며, 원소분석 결과 고위발열량은 19.8 MJ kg−1으로 나타났다. 또한, 본 분리균주는 고부가가치 항산화물질로 알려져 있는 피코시아닌을 광독립영양적으로 21.4 mg g−1의 농도로 생산할 수 있는 것을 확인하였다. 따라서, 본 연구결과는 KNUA012 균주가 미세조류 기반 바이오연료와 바이오매스 원료의 경제적인 생산에 있어 이상적인 자원이 될 수 있음을 제시하였다.

울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용 (Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do)

  • 장형석;강남선;김경미;전병희;박준상;홍지원
    • 생명과학회지
    • /
    • 제27권10호
    • /
    • pp.1152-1160
    • /
    • 2017
  • 단세포 녹조류 균주를 경상북도 울릉군 울릉도 거북바위 주변 조수웅덩이로부터 순수분리하여 형태적, 분자적, 및 생화학적 특성을 분석한 결과 옥세노클로렐라 프로토테코이드에 속하는 것으로 밝혀졌다. 본 종은 현재까지 한국에서 공식 기록이 없는 미기록종으로 옥세노클로렐라 프로토테코이드 MM0011 균주라고 명명하였으며, 생장, 지질/광합성 색소 조성 및 바이오매스 특성에 대해 조사를 실시하였다. 분리균주는 광범위한 온도($5-35^{\circ}C$)에서 생장할 수 있었으며 1.5 M 염화나트륨 농도까지 생존할 수 있었다. 가스크로마토그래프/질량분석기를 이용한 분석 결과, 본 균주에는 영양적으로 중요한 불포화지방산이 풍부한 것으로 나타났으며, 특히 리놀네산(27.6%) 및 알파 리놀렌산(37.2%)이 주요 지방산 성분으로 확인되었다. 따라서 본 토착 미세조류 균주는 어유 또는 식물성유를 대체할 수 있는 잠재적인 오메가-3 및 오메가-6 불포화지방산 원료가 될 수 있을 것으로 사료된다. 또한, 고부가가치 항산화 물질인 루테인이 보조색소로서 본 균주에 의해 생합성 되는 것으로 밝혀졌다. 일반성분분석 결과 MM0011 균주의 휘발성물질 함량은 85.6%였으며, 원소분석 결과 총 발열량은 $20.3MJ\;kg^{-1}$으로 나타났다. 또한 배지로부터 40.5%의 전질소와 27.9%의 전인을 각각 제거할 수 있어 향후 바이오연료 원료물질 생산과 오 폐수처리를 연계할 수 있는 가능성 역시 제시하였다. 추가적으로 MM0011 바이오매스는 높은 단백질 함량(51.4%)을 갖고 있어 우수한 동물사료의 원료가 될 수 있는 가능성도 보여주고 있다. 따라서, 본 균주는 미세조류 기반 생화학 물질 생산 및 바이오매스 원료로서 상업적인 이용 가능성이 높음을 시사한다.

현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구 (A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses)

  • 김성희;정경자;정상섬;전영진;김정섭;이철주
    • 한국지반환경공학회 논문집
    • /
    • 제18권7호
    • /
    • pp.37-47
    • /
    • 2017
  • 본 연구에서는 강관매입말뚝의 하중-침하 및 전단응력 전이 특성을 분석하기 위하여 시험시공 및 수치해석을 수행하였다. 동재하시험 및 정재하시험을 수행한 결과 EOID 및 Restrike 시험을 통해 평가된 말뚝의 설계지지력은 정재하시험에서 평가된 설계 지지력에 비해 각각 약 56~105% 및 65~121%의 범위를 보였으며, 말뚝재하시험 이전에 수행된 Class-A type 수치해석의 경우 38~142%의 범위를 보였다. 또한 Restrike 시험에서 평가된 설계지지력은 EOID 시험의 설계지지력에 비해 12~60% 증가된 것으로 평가되었다. EOID에서는 선단지지력이 크게 측정되는 데 비해, Restrike 시험에서는 주면마찰력이 크게 측정되었는데 Restrike 시험의 타격에너지가 충분하지 않은 경우 말뚝의 선단지지력이 과소평가될 가능성이 있는 것으로 분석되었다. 본 연구의 분석에 의하면 동재하시험을 통해 말뚝의 지지력을 합리적으로 평가하기 위해서는 주면지지력은 Restrike 시험 결과를, 선단지지력은 EOID 시험 결과를 적용하는 것이 합리적인 것을 알 수 있었다. 정재하시험 실측값과 수치해석으로부터 예측된 하중-침하 관계는 탄성범위까지는 어느 정도 유사하지만 항복이 발생한 이후의 거동은 크게 벗어났다. 즉 실측값은 항복 이후 경화현상이 거의 없이 마치 탄성-완전소성(elastic-perfectly plastic) 재료와 유사하게 파괴에 도달되는 반면에, 수치해석에서는 변형경화(strain hardening)과정을 거치면서 파괴에 점진적으로 도달되는 경향을 보였다. 말뚝의 하중-침하 특성은 지반의 강성에 영향을 받으며, 축력분포는 지반의 전단 강도상수에 영향을 받는 것으로 나타났다.

에폭시 수지 모르터의 특성에 관한 실험적 연구 (Experimental Studies on the Properties of Epoxy Resin Mortars)

  • 연규석;강신업
    • 한국농공학회지
    • /
    • 제26권1호
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF