• 제목/요약/키워드: ultimate moment

검색결과 381건 처리시간 0.019초

Redistribution of moments in reinforced high-strength concrete beams with and without confinement

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.379-398
    • /
    • 2015
  • Confinement is known to have important influence on ductility of high-strength concrete (HSC) members and it may therefore be anticipated that this parameter would also affect notably the moment redistribution in these members. The correctness of this "common-sense knowledge" is examined in the present study. A numerical test is performed on two-span continuous reinforced HSC beams with and without confinement using an experimentally validated nonlinear model. The results show that the effect of confinement on moment redistribution is totally different from that on flexural ductility. The moment redistribution at ultimate limit state is found to be almost independent of the confinement, provided that both the negative and positive plastic hinges have formed at failure. The numerical findings are consistent with tests performed on prototype HSC beams. Several design codes are evaluated. It is demonstrated that the code equations by Eurocode 2 (EC2), British Standards Institution (BSI) and Canadian Standards Association (CSA) can well reflect the effect of confinement on moment redistribution in reinforced HSC beams but the American Concrete Institute (ACI) code cannot.

박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력 (Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity)

  • 이계희;김선훈
    • 한국전산구조공학회논문집
    • /
    • 제20권4호
    • /
    • pp.485-492
    • /
    • 2007
  • 본 논문에서는 1편에서 얻어진 온도분포와 박리시간이력을 이용하여 지하박스구조물의 열응력을 산정하고 이에 기반한 열모멘트를 산청하였다. 또한 이때의 온도분포를 바탕으로 구조물의 열적비선형성을 고려한 극한모멘트를 산정하여 구조물의 내하력을 산정하였다. 그 결과 상부슬래브의 부모멘트 구간은 단면의 온도경사에 의해서 발생하는 열모멘트에 의해 지배받는 것으로 나타났다. 반면 정모멘트 구간은 박리에 의해 화염에 노출된 철근의 항복응력에 의해 지배받는 것으로 나타났다.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.

강판 콘크리트(SC) 기둥과 H형강 보의 용접 접합부에 대한 반복 이력 실험 (Cyclic Test of welding connections for Steel-Plate Concrete Column to H-shaped Steel Girders)

  • 박호영;강철규;최병정
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2014
  • This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능 (Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System)

  • 한복규;홍건호;신영수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

Probabilistic Analysis of Reinforced Concrete Beam and Slab Deflections Using Monte Carlo Simulation

  • Choi, Bong-Seob;Kwon, Young-Wung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.11-21
    • /
    • 2000
  • It is not easy to correctly predict deflections of reinforced concrete beams and one-way slabs due to the variability of parameters involved in the calculation of deflections. Monte Carlo simulation is used to assess the variability of deflections with known statistical data and probability distributions of variables. A deterministic deflection value is obtained using the layered beam model based on the finite element approach in which a finite element is divided into a number of layers over the depth. The model takes into account nonlinear effects such as cracking, creep and shrinkage. Statistical parameters were obtained from the literature. For the assessment of variability of deflections, 12 cases of one-way slabs and T-beams are designed on the basis of ultimate moment capacity. Several results of a probabilistic study are presented to indicate general trends indicated by results and demonstrate the effect of certain design parameters on the variability of deflections. From simulation results, the variability of deflections relies primarily on the ratio of applied moment to cracking moment and the corre-sponding reinforcement ratio.

  • PDF

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구 (A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling)

  • 서건호;서상정;권영봉
    • 한국강구조학회 논문집
    • /
    • 제23권6호
    • /
    • pp.647-657
    • /
    • 2011
  • 본 논문에는 국부좌굴이 발생하는 휨부재의 유한요소해석 및 실험에 근거한 단면의 휨강도에 대하여 기술하였다. 박판으로 구성된 휨부재는 단면조건 및 횡방향 경계조건에 따라서 국부좌굴, 횡-비틀림좌굴 및 두 좌굴의 혼합좌굴이 발생하게 된다. 플랜지나 복부의 폭-두 께비가 큰 경우 횡-비틀림좌굴 발생 이전에 국부좌굴이 발생하며, 국부좌굴은 휨부재의 횡-비틀림좌굴강도에 영향을 미치게 된다. 이런 현상은 박판 형강의 휨강도 산정 시 고려하여야 한다. 다양한 폭-두께비를 갖는 플랜지와 복부판으로 구성된 휨부재의 해석에 국부좌굴 및 횡좌굴 모드의 초기처짐 및 잔류응력을 포함하였다. 해석결과 및 실험에 근거하여 국부좌굴과 횡-비틀림좌굴을 고려하는 설계강도식을 제안하였다. 제안된 직접강도법은 실험에 근거한 강도식과 유효단면 대신 총단면의 단면계수를 사용한다. 제안된 강도식에 의한 휨강도를 AISC, EC3 및 도로교설계기준과 비교하여 보았다. 제안된 직접강도법은 국부좌굴과 횡-비틀림좌굴의 혼합 유무와 상관없이 휨부재의 휨강도를 적절하게 예측할 수 있는 것으로 판단되었다.